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EXECUTIVE SUMMARY 
 
Introduction 
 
In the Florida Standard Urban Transportation Model Structure (FSUTMS), the mode choice 
utility functions typically include variables like travel times by automobile and by transit, 
terminal times, parking costs, and transit fares.  Other factors may also influence the decision of 
transit use than travel costs alone.  It has been widely recognized that socioeconomic 
characteristics of the population have an impact on the decision to use transit.  Such 
characteristics, however, are generally not considered in modal split, as is true of FSUTMS.  
Other important factors such as land use may be missing from the models, preventing them from 
producing valid and reliable transit ridership forecasts. 
 
The purpose of this study was to improve the estimates of transit accessibility and to identify and 
analyze factors that have a significant effect on transit ridership.  The goal was to recommend a 
set of variables that may be incorporated into the FSUTMS modal split procedure to improve its 
transit forecasting capability.  The specific objectives were: 
 
(1) To obtain a good understanding of the current state-of-the-art and state-of-the-practice in 

transit ridership forecasting; 
(2) To identify available GIS data resources for improving the accuracy of analysis, and 

determine appropriate geographic units for data analysis and for modeling; 
(3) To develop a standard procedure that can be used to determine transit accessibility by 

pedestrians and automobiles; 
(4) To identify additional variables that further capture the underlying causes of transit use; 

and 
(5) To develop practical recommendations with regards to incorporating improvements into 

FSUTMS. 
 
This report presents the research methodologies, findings and conclusions, including factors that 
affect transit use and accessibility, and recommendations for improving the FSUTMS mode 
choice model. 
 
Literature Review 
 
A literature review of publications related to transit ridership models, transit accessibility 
evaluation, mode choice and urban forms, transit use, and urban design was conducted. The 
review indicated that the most common analysis approaches found were multiple regression and 
time-series analysis.  While structural models are capable of modeling interrelated variables and 
are appropriate if the calibration of a model is necessary to predict the modal split, few were 
employed.  Nevertheless, the objective of this research was to determine the relevance of 
different variables and their relative importance in transit use, which should be adequately served 
with regression methods.  The weaknesses of the multiple regression approach, such as 
autocorrelation, non-normal distributions and invalidity of the independent, identically 
distributed (IID) normal assumption, were discussed.  Although flawed in theory, multiple 
regression analysis is still widely applied since its concept is easy to understand.  Thus, from a 
practitioner’s point of view, this approach may be worth further investigation. 
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The factors that affect transit use can generally be classified into the following categories: 
 

(1) Transit level of service (LOS); 
(2) Accessibility; 
(3) Land use/urban design; and 
(4) Transit users’ socioeconomic/demographic characteristics. 

 
Transit service quality may be considered in terms of rider comfort, cleanliness and appearance, 
safety and security, pedestrian environment, amenities, headway, hours of service, parking 
spaces, reliability, service coverage, transfer, cost, etc.  Some of these are traditional LOS 
variables, such as transit service frequency, route coverage, and fares, others have been recently 
included as transit LOS factors (Kittleson & Associates, Inc. 1999a, 1999b).  The literature 
generally supports the ability of transit systems with high-quality services to attract more users.  
However, many of the LOS factors affecting transit use often cannot be easily quantified.  For 
example, most of the studies point out the conceptual importance of the LOS measures of 
effectiveness (MOEs) without further suggesting the appropriate approaches to quantify many if 
not all of them.  Some examples of such MOEs include passenger comfort in vehicle and in 
stations, security, and pedestrian environment.  Consequently, it is still difficult to formulate 
LOS variables in models for estimating transit share.  As a result, statistics such as Person Per 
Minute Served were developed and implemented to determine the quality of transit service.  
Although tremendous efforts have been devoted to exploring the LOS factors that significantly 
affect transit use, contradictory findings were cited by different researchers and practitioners in 
different study areas (e.g., Ulberg (1982) and Vaziri et al. (1990) did not find service hours to be 
significant in contrast to other researchers) indicating that some of the transit LOS MOEs may 
not be transferable from one urban area to the other. 
 
Similar to the LOS MOEs, some accessibility variables were also demonstrated to significantly 
affect transit use by the research studies such as Metro (2000), Parsons Brinckerhoff (2000), Sun 
et al. (1998), and others.  Numerous models are available for measuring accessibility, e.g., the 
accessibility index proposed by Richardson and Young (1982) and Kockelman (1997).  Lately, 
with the advancements in geographic information system (GIS) techniques and more readily 
available data sources, more rigorous and detailed analyses (such as considering natural and 
manmade barriers that prevent access from residential areas to public transit stops), have been 
developed to better quantify accessibility.  Nevertheless, the procedures that measure 
accessibility in a GIS environment are not yet simple menu-driven processes, requiring that 
someone trained in GIS acquire the necessary information and manipulate the related data.  In 
addition, disaggregated accessibility variables are still not adopted in the traditional aggregated 
travel demand forecasting models and their effects on demand models’ outcome are not yet 
verified. 
 
Land use/urban design variables may include population density, employment density, land use 
mix, land use balance, etc.  Although some of the literature consider the land use/urban design 
factor as an important component affecting the travel mode selected by road users, its effects are 
not as significant as individual characteristics such as gender, ethnicity, and age (Loutzenheiser, 
1997).  Thus, how to properly define and measure the effects of land use/urban design on transit 
ridership appears to be a relatively new research topic that has attracted the attention of many 
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researchers and practitioners.  Different forms of entropy1, e.g., those implemented in Frank and 
Pivo (1994) and Kockelman (1997), have been adopted by different studies in different study 
areas.  Further research is needed to focus on land use factors and their links to travel behavior 
because their relationships have not yet been thoroughly investigated. 
 
According to our literature review, research on socioeconomic/demographic characteristics of 
transit users results in significantly contradictory conclusions.  For example, income was found 
to not significantly affect transit use as stated in seven research papers, while the majority of 
literature concluded otherwise.  Conflicting findings can also be observed for age, gender, and 
vehicle availability variables.  In addition, a household’s or an individual’s 
socioeconomic/demographic characteristics are usually highly correlated, such as in the case of 
vehicle onwership and income.  Additional precaution, such as applying the Principal 
Components method to reduce the number of variables (Cambridge Systematics, 1994), may be 
required before incorporating correlated factors. 
 
One of the problems with many studies on the links between various factors and transit use is 
that the conclusions are based on claims of statistical significance, while in reality the 
contribution or impact of these factors is insignificant.  For instance, some models presented in 
the literature only achieved a small R2 (i.e., 0.1 or less) while all the model variables are 
statistically significant.  From a modeling perspective, a contributing factor should be selected 
based not only on its statistical significance, but also on its power to explain the variations in 
transit ridership. 
 
Study Area Selection 
 
The study was limited to a selected area due to time constraints and the significant effort required 
to collect, compile, and verify the quality of the necessary data for the entire southeast Florida 
Region or one or more of its counties.  The decision was made to select a random sample from 
Miami Dade County for statistical analysis because this county had the largest share of transit 
users and more transit types compared to other counties.  Data from Broward and Palm Beach 
counties were used to test whether the same factors identified by the models developed for 
Miami-Dade County correlated with transit uses in each of those counties. 
 
This study used the transit onboard (TOB) survey data, collected as part of the Southeast Florida 
Regional Travel Characteristics Study (SEFRTCS).  The information from the household survey 
was not used because it was not adequate to allow statistically significant analysis on factors that 
impact transit usage due to the small transit user response size. 
 
In selecting the analysis units, Traffic Analysis Zones (TAZ’s) were considered too small to be 
appropriate because the TOB sample sizes were too small to ensure adequate data points in 
individual TAZs.  Instead, Year 2000 census tracts were considered appropriate because they 
were not so small that too few samples would be available in each tract or too large to lose too 
much of the variability of important land use characteristics.  One hundred census tracts were 
selected following a random sampling procedure. 

                                                 
1   A term in physics, entropy measures disorder and randomness.  Here it measures land use dissimilarity or land 
use mix. 
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Multiple regression analysis was chosen as the methodology for determining the factors affecting 
transit usage.  Although for the SEFRTCS the TOB survey samples were randomly collected 
from the transit systems based on their ridership and did not reflect the true transit share at either 
trip end, the number of samples at both transit trip ends were highly related to the area’s transit 
services and thus theoretically the transit demand.  Because the purpose of this study was to 
search for the factors that had impacts on transit use and not to estimate the true transit mode 
share in an area, the number of TOB samples at tract level may be used as the dependent variable 
for regression analysis. 
 
Data Collection and Processing 
 
Data from a transit-on-board (TOB) survey conducted in the southeast Florida area and data on 
transit level of service, accessibility, land use, and socioeconomic characteristics of transit users 
at aggregate levels were used to develop the models.  More than 170 variables were compiled 
using GIS.  The independent variables may be classified generally into the following categories: 
 

�� Transit level of service (LOS).  Examples include average bus headway, total number of 
bus runs in a census tract, percentage of a census tract covered by 0.25-mile buffer 
around Metrorail stations, and others. 

�� Land use.  Some of the land use variables include population density, dwelling unit 
density, employment density, population plus employment density, land use mix, parcel 
size, and jobs-housing balance. 

�� Aggregate tract level socioeconomic/demographic characteristics of the population.  
Examples of this group of variables include property values, racial makeup, birth place 
(U.S. or foreign born), percentage of household without a car, and some lifestyle 
variables. 

�� Regional Accessibility.  This group of variables includes a set of measures reflecting 
opportunities available to transit users throughout the county and the ease of travel by 
transit to those opportunities.  They were computed using a gravity model-like formula 
that incorporates zonal employment opportunities and a disutility function reflect travel 
time between zones. 

 
Transit Accessibility 
 
To improve the estimation of transit walk accessibility, which was one of the objectives of this 
study, the research team developed a new methodology for estimating the percentage of 
production trips served by transit.  This method takes into consideration walking distance to 
transit stops, population distribution, and existence of barriers to pedestrians.  Data included the 
detailed street network, bus stop locations, bus routes, population and dwelling unit information 
by TAZ, property locations as represented by their label points, and property tax database, which 
provided information on number of bedrooms, used as a proxy for number of persons, at each 
property location.  The transit onboard survey data were used to determine the effect of walking 
distance on transit use; results suggest that transit use deteriorates exponentially with walking 
distance to transit stops.  A decay function was determined based on the survey data reflecting 
this deteriorating trend in transit use with respect to walk distance, and transit walk accessibility 
was measured by the percentage of the population, weighted by the decay function, in a zone that 
was within 0.5 mile of walking distance from transit stops.  This population is referred to as 
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“distance decayed transit service population.”  Increasing the limit of walking distance beyond 
0.5 mile produced no noticeable increase in accessibility based on the survey data.  Because of 
the decay in transit use due to increases in walking distance, transit accessibility is much lower 
than the traditional buffer method or the network ratio method will estimate. 
 
Results from analysis also showed that there was no significant difference between the 
percentage of population with transit access and the percentage of production trips with transit 
access in a given zone.  This means that the percentage of population with transit access can be 
used directly in place of percentage production trips with transit access as required as input by 
FSUTMS modal split model. 
 
To allow the use of the transit accessibility measure for forecast purposes, where detailed 
information on street configuration and population distribution may be lacking for new TAZs, 
regression models have been developed using easily obtainable data to predict transit 
accessibility.  One of the variables used in predicting transit accessibility for production trips was 
the number of streets in a TAZ intersecting TAZ boundary per 1,000 feet.  This variable in fact 
measures how well the street configuration provides walk accessibility, for example, in 
traditional neighborhoods with grid street patterns and small blocks versus suburban 
neighborhoods where streets are often curvilinear with cul-de-sacs.  The value of this variable 
must be determined based on the anticipated type of the communities in new TAZs.  This may be 
used as a planning tool to examine the impact of different alternatives of development in a new 
area in terms of its transit accessibility. 
 
Employment accessibility to transit was defined as the percentage of employees in a zone within 
0.25 mile air distance of transit stops.  This choice was because most commercial developments 
are located along arterials and thus are rather accessible to transit, and because the spatial 
distribution of employees in a zone is difficult to determine.  Employing land use data improves 
the information on the spatial distribution of employees in a zone as opposed to assuming 
employees are evenly distributed across the entire zone or they are evenly distributed along all 
arterials, although on a few occasions land use data have not been consistent with employment 
data from the ZDATA file. 
 
Forecasting future employment accessibility to transit services may be accomplished using the 
regression model developed in this study.  Application of the model only requires the calculation 
of bus route density in a zone and the service and commercial employment ratio; both are easily 
obtainable. 
 
Auto access of transit was analyzed using the TOB data of transit trips that involved accessing a 
transit station/stop either by park-and-ride or kiss-and-ride.  Analysis results show that while 
there was no relationship between auto access trip distance and the transit trip length, most 
transit trips were longer than the auto access trips.  The auto access distance for 92% of the 
sampled transit trips was shorter than 10 miles; the longest was 14.6 miles.  Therefore, we 
conclude that auto access distance in a zone may be assumed to be up to the longest transit trips 
likely from that zone (by considering premium transit modes and major activity centers) up to 14 
miles.  This upper limit depends on the route length of the rapid transit services and may change 
if the route configuration or length changes. 
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Regression Analysis of Factors Contributing to Transit Use 
 
Other transit factors impacting transit use were also investigated.  Multiple regression analysis 
was employed using data compiled for Miami-Dade, Broward, and Palm Beach counties.  Four 
methods were used to compile the model data, which ranged in their levels of detail in the land 
use and demographic information.  Regional accessibility variables, especially those weighted by 
population, appeared to have the most significant impact on both transit productions and 
attractions, regardless of which method was used to compile the data.  Regional accessibility 
measures were calculated based zonal population, employment, zonal trip time, and impedance 
functions calibrated based on travel survey data for both transit and highway networks.  The 
impedance functions are unlikely to be transferable and may need to be calibrated for individual 
urban areas, which will require a moderate effort. 
 
For Miami-Dade County, the average number of bus runs in a day per bus stop in a given tract, 
the percentage of tract area falling into a 0.25-mile transit buffer, and percentage of distance 
decayed transit service population were also relatively good indicators for predicting transit use 
at both production and attraction ends.  The first two kinds of data are easier to compile and are 
more reliable than regional accessibility and may be used as alternatives to regional accessibility 
measures.  The latter two variables, i.e., percentage of transit service areas and percentage of 
distance decayed transit service population in a tract, are strongly correlated.  Further analysis 
revealed that percentage of transit service areas did not perform well in areas that have low 
service coverage.  Therefore, percentage of distance decayed transit service population in a tract 
is considered a better predictor of transit use. 
 
No significant linear relationship was found consistently between transit use and the 
demographic, socio-economic, and other transit LOS variables for either production or attraction 
trips beside the regional accessibility measure, the number of bus runs, transit service coverage, 
and distance decayed transit service population, which are all related to transit supply.  This may 
be due to the loss of spatial variation in these variables when large spatial analysis units (such as 
census tracts) are used to compile the data.  While smaller spatial units will preserve the 
characteristics of an area or population better, this research has determined that the TOB survey 
cannot be used due to the limited number of samples available resulting in a significant number 
of spatial units with no samples. 
 
In comparison with transit production trip models, the goodness-of-fit for attraction models are 
relatively poor.  The R2s for these models are consistently lower than those for the production 
trip models.  This may be the result of less reliable data on zonal employment. 
 
Although the models for Broward and Palm Beach counties show similar effects of the regional 
accessibility variables on transit use, no other variables can be identified as the 
supplement/substitute of the accessibility variables. 
 
To investigate the effect of demand variables by controlling for transit LOS, the data were 
divided into three groups based on their regional accessibility levels: low, medium, and high.  
Variables that were consistently included in models for three regional transit accessibility groups 
with consistent and correct signs were considered to be candidate predictors for transit demand.  
Total density (TotalDensity) compiled with the GIS Land Use Method, and entropy measures 



 7 
 

 

(AvgEntropy) compiled with the Property Method and the Buffer Method appeared to be such 
predictors.  However, entropy is considered a characteristic of transit-oriented neighborhoods 
rather than the cause of transit use.  Its predictive power is therefore uncertain. 
 
Findings and Conclusions 
 
This research demonstrated by using GIS that more realistic estimates of transit walk 
accessibility could be obtained.  Transit accessibility was much lower than that estimated by 
traditional buffer method when man-made and natural barriers and the effect of long walking 
distance on transit use are considered.  Transit walk accessibility can also be forecast based on 
data that are typically used by FSUTMS models.  The only variable that needs to be determined 
for forecast is a policy variable that determines the type of urban design to be adopted or 
envisioned.  The study concluded the following: 
 

�� Analysis of auto access to transit shows that auto access distance in a zone may be 
assumed to be up to the longest transit trips likely from that zone (by considering 
premium transit modes and major activity centers) up to 14 miles.  This result, obtained 
based on data from Miami-Dade County, however, may not be applicable to areas of a 
different urban structure, premier transit alignment, and parking availability. 

 
�� Results from the regression analysis to identify the most influential factors on transit use 

suggest that transit supply variables, such as regional accessibility and number of daily 
bus runs, dominate other factors in contributing to transit use, which in turn is the result 
of transit service supply being determined based on demand.  Some demand variables 
such as density and land use mix also appear to be significant.  Additional research 
efforts are necessary to estimate the coefficients of the potential variables identified in 
this research for each travel mode’s utility function utilized in the modal split process. 

 
�� For Miami-Dade County, the average number of bus runs per bus stop in a given tract 

and percentage of tract area falling into a 0.25-mile transit buffer were also relatively 
good indicators for predicting transit use at both production and attraction ends.  Because 
these two kinds of data are easier to compile and are more reliable than regional 
accessibility, they may be used as alternatives to regional accessibility measures.   
However, the newly developed DECAY_POP variable, i.e., percentage of transit service 
population seems to be a stronger indicator for transit production than the percentage of 
transit service area. 

 
�� No significant linear relationships were found consistently between transit use and the 

demographic, socio-economic, and other transit LOS variables for either production or 
attraction trips beside the regional accessibility measures, the number of bus runs, and 
transit service coverage, which are all related to transit supply.  This may be due to the 
loss of spatial variation in these variables when large spatial analysis units (such as 
census tracts) are used to compile the data. 

 
�� Compared to transit production trip models, the goodness-of-fit for attraction models 

were relatively poor.  This may be the result of less reliable data on zonal employment.  
Furthermore, the models for Broward and Palm Beach counties showed similar effects of 
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the accessibility variables on transit productions.  Again, no other variables can be 
identified as the supplement/substitute of the accessibility variables. 

 
�� This research has used GIS extensively to compile data for various variables created for 

the accessibility analyses and the transit use analyses.  Transit accessibility analyses 
require bus stop locations and property locations.  As it is becoming more common for 
counties to possess GIS parcel data, the availability of property location data is not 
foreseen as a problem for the application of the methodology developed in this research.  
Property tax records should include information on number of bedrooms for each 
residential property and information on the type of the property to indicate if it is a 
single- or multi-family dwelling.  If number of bedroom information is unavailable, then 
an average household size will have to be assigned to dwelling units that are of the same 
type (single- or multi-family).  In recent years, some of the Florida MPOs have begun to 
use lifestyle models, which do not require data on dwelling types and zonal population by 
dwelling types.  For the purpose of obtaining better estimates of transit service population 
and possibly other applications, it is suggested that MPOs continue to maintain dwelling 
type and population information, which will not require significant efforts. 

 
�� Finally, the transit accessibility analysis can be automated with a specially designed GIS 

program.  This program will automate the process of matching properties to streets, 
assign household size, create transit service network, calculate the percentage of 
population with transit access in a TAZ, estimate the percentage of workers with transit 
access in a zone using land use information, and so on. 

 
Recommendations 
 
Based on the research results described in this report, the following recommendations are 
provided for consideration for future effort in improving FSUTMS modal split models: 
 

(1) The long transit walk (assuming a one-mile walking distance) file is unnecessary 
since transit use will be extremely low beyond one-half mile from transit stops.  
Instead, a single transit walk file can be used that is based on one-half mile walking 
distance and the decay function calibrated in this research.  The data may also be used 
for transit service planning as it can provide much more accurate information 
regarding service population at the transit stop level. 

 
(2) The percentage of population served by transit in a zone may be estimated using the 

transit service population forecast model developed in this research for any reasons 
such as lack of data or skilled GIS staff.  The forecast models can also be used for 
forecasting transit service population for future year models. 

 
(3) A GIS application should to be implemented that will calculate percentage of transit 

service population in a zone based on street network data, ZDATA1 and ZDATA2 
files, property tax database, and parcel GIS data.  In the case that GIS parcel data are 
unavailable, the regression model will be applied to estimate the percentage. 
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(4) If a buffer method is to be used to estimate transit service population, caution should 
be used when the calculated service population percentage from the buffer method 
exceeds 50%, a level rarely exceeded by the distance decayed transit service 
population.  Only when population is actually clustered around transit stops, a 
percentage higher than 50% may be justified. 

 
(5) Regional accessibility may be considered for the inclusion in the modal split model.  

This requires that accessibility to be estimated for the future, which is possible given 
forecast population, employment, and transportation improvements. 

 
(6) Density as measured by total employment plus population per acre may serve as a 

measure for demand. 
 

(7) To ensure that adequate data are available to support a more conclusive study, 
carefully designed surveys are desired in the future to obtain adequate number of 
observations in areas that reflect the different spectrum of socioeconomic and land 
use characteristics.  Future household surveys should target transit households so that 
studies can be carried out to directly determine the modal split instead of using an 
indirect approach as in this study.  If a community leadership sees transit 
development as necessary, then the development of information, data, and forecasting 
methods to better place investments is worthwhile. 
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1. INTRODUCTION 
 
While transit accounts for only a small percentage of all trips in Florida, it is the primary means 
of travel for certain segments of the population who may not have access to jobs, health services, 
and social and recreational facilities by other means.  Additionally, when adequately and 
properly provided, transit offers a travel alternative that may help to alleviate roadway 
congestion.  To determine the appropriate level of current transit services and future transit 
investments for specific service areas, accurate information on the number of trips by transit, trip 
origins and destinations, and transit modes and routes are needed.  There are two basic 
approaches to obtain such information.  One is to apply a comprehensive regional travel demand 
model, typically a four-step model, and the other is to develop special models or analyses, 
usually designed specifically for transit-only purposes. 
 
In four-step demand models, transit ridership is estimated during the modal split step. This is 
generally based on a multinomial logit model or, more recently and frequently, a nested logit 
model, although cross-classification similar to that for trip generation has also been used.  The 
multinomial logit model has the following form: 
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where 
Pn(i)  = the probability with which person n will choose mode alternative i; 
Yn   = the value of the response variable for individual n; 
Cn  = the set of alternatives in person n’s choice set; and 
Vni  = the measurable component of the utility of alternative i for individual n. 

 
The measurable component of the utility may be expressed in matrix form as: 
  

Vnj = A’ Xn + B’ Zj + C’ Wnj  j � Cn 
where 

Xn = a vector of characteristics of individual n; 
Zj = a vector of attributes of alternative j; 
Wnj = a vector of interactions between characteristics of individual n and attributes 

of alternative j; 
Cn = the choice set faced by individual n; and 
A, B, C = vectors of model parameters, which are determined during model calibration. 

 
In the Florida Standard Urban Transportation Model Structure (FSUTMS), the utility functions 
typically include variables like travel times by automobile and by transit, terminal times, parking 
costs, and transit fares.  It is widely recognized that more factors influence the decision of transit 
use than travel costs alone, such as socioeconomic characteristics of the population.  Such 
characteristics other possibly other factors, however, are generally not considered in modal split, 
as is true of FSUTMS.  Other important factors such as land use may be missing from the 
models, reducing their ability to produce valid and reliable transit ridership forecasts. 
 
There are several other possible causes for the fact that it is difficult to obtain accurate transit 
forecasts from four-step models, resulting in unrealistic expectations: 
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(1) Transit ridership information is usually scantily available compared with the large 
amount of data collected for highway users.  The transit component validation of the 
models is often for aggregate market shares and for a few screen lines (Dehgani and 
Harvey, 1994). 

 
(2) Analyses are typically based on traffic analysis zones (TAZs) that often border arterials 

spaced one-half or one mile apart.  In FSUTMS, the aggregate level of TAZs for modal 
split implies that within the same TAZ, characteristics of travelers and land uses are 
uniform, which is far from reality.  For instance, people are generally not willing to walk 
much farther than 0.25 mile to a transit stop.  Even within 0.25-mile air distance of transit 
stops, the actual walking distance may be significantly longer if the streets are winding or 
simply not accessible due to natural or man-made barriers. The land-use type and 
intensity may also vary within a TAZ.  Such variances are masked when aggregated data 
are used. 

 
(3) Currently in FSUTMS, transit auto access trips are assumed to be of a maximum length 

of ten miles.  This assumption has not been studied or validated.  Additionally, auto 
access trips are not based on highway skims and therefore are not affected by highway 
congestion.  The effect of highway congestion on use of transit needs to be evaluated. 

 
In recent years, various studies designed to estimate transit ridership have been undertaken, but 
the results have not been considered for incorporation into FSUTMS.  Additionally, GIS data 
resources have become readily available, allowing for more rigorous and detailed analyses than 
were possible before. 
 
The traditional travel demand models can greatly benefit from utilizing more disaggregate data 
to better reflect the spatial patterns of population, employment, land use, access, etc.  More 
explanatory variables that have been known to significantly influence transit ridership may also 
be incorporated into the existing FSUTMS modal split module to improve the predictive power 
of the model. 
 
In an assessment of transit system modeling in Florida (Pendyala, 1996), it was recommended 
that trip makers’ characteristics should be considered for inclusion as explanatory variables.  
More specifically, such variables may include income, employment type and status, vehicle 
availability, household structure, age, and gender.  Another recommendation was to account for 
the time of day factor in transit modeling as a consideration, such as safety at night contributing 
to automobile use. 
 
The purpose of this study was to improve the estimates of transit accessibility and to identify and 
analyze factors that have a significant effect on transit ridership.  The goal was to recommend a 
set of variables that may be incorporated into the FSUTMS modal split procedure to improve its 
transit forecasting capability.  The specific objectives were as follows: 
 
(1) Obtain a good understanding of the current state-of-the-art and state-of-the-practice in 

transit ridership forecasting; 
(2) Identify available GIS data resources for improving the accuracy of analysis, and 

determine appropriate geographic units for data analysis and for modeling; 
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(3) Develop a standard procedure that can be used to determine transit accessibility by 
pedestrians and automobiles; 

(4) Identify additional variables that further capture the underlying causes of transit use; and 
(5) Develop practical recommendations with regards to incorporating improvements into 

FSUTMS. 
 
The remainder of this report is divided into sections. The results of the literature review are 
summarized in Chapter 2.  Chapter 3 details the procedure and results of selecting the study 
areas.  Chapter 4 describes the data collected and processed for this project.  Chapter 5 presents 
the methodology for estimating transit walk accessibility and analysis of auto accessibility.  
Regression analyses to identify potential variables that may be incorporated into FSUTMS modal 
split model are discussed in Chapter 6.  Finally, conclusions and recommendations are provided 
in Chapter 7. 
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2. LITERATURE REVIEW 
 
Many factors affect transit use.  The best understood perhaps are fare and travel time.  Both have 
been incorporated into existing travel demand models.  In this report, the literature review will 
focus on studies that address issues beyond transit fare and travel time.  We first survey the 
literature on transit level of service, followed by accessibility; both are important determinants in 
mode choice.  Transit ridership forecasting models are then presented.  Studies on the impact of 
land use form and neighborhood design on travel behavior including mode choice are also 
reviewed. 
 
2.1 Transit Level of Service 
 
Level of service (LOS) standards for highways were established based on the mobility of 
vehicles, not the mobility of people, as in the case of transit, and are easier to measure because 
they are based on vehicle speed, density, and delays.  Transit service quality, on the other hand, 
is more difficult to measure because most of the time services are provided with a fixed schedule 
and routes, and an array of factors ranging from ease of access/egress and transfer time, wait 
time to ride, comfort, and security, to name a few, may affect the decision of a traveler to use 
transit or not.  Transit service quality varies from one urban area to another, from mode to mode, 
even from route to route.  Worldwide evidence establishes that high-quality transit services are 
able to attract more transit users and reduce automobile use; however, the reverse is also true–
poor transit service encourages more automobile use and discourages transit use.  Transit LOS, 
therefore, needs to be controlled in any studies that attempt to establish a relationship between 
transit use and land use, policy, and demographic and socioeconomic factors, as well as other 
relevant issues. 
 
Cleland et al. (1997) reported the results of a survey on transit users’ satisfaction with the largest 
transit systems in six urban areas in Florida.  The survey was conducted for the purpose of 
identifying existing and potential future problems.  More than 14,500 surveys were collected.  
Among the 22 factors included in the survey, transit users identified hours of service, location of 
routes, and headways as the biggest concerns.  Additionally, bus rider comfort, printed 
schedules, safety, and cleanliness were identified as future potential problems. 
 
A recent Transit Cooperative Research Program (TCRP) project established a means to measure 
a set of service quality factors that influence the decision to use transit (Kittelson & Associates, 
1999a).  The service quality factors include service coverage, pedestrian environment, 
scheduling, amenities, transit information, transfer, total trip type, cost, safety and security, 
passenger loads, appearance and comfort, and reliability.  Service coverage includes spatial 
availability at trip origins and destinations.  Pedestrian environment is defined by presence and 
conditions of sidewalks, street lights, topography, signalized crosswalks on busy arterials, 
crosswalks with pedestrian refuges in the medium, curb cuts and bus stop loading areas, etc.  
Scheduling is concerned with the days and hours for which services are provided.  Service 
frequency is also important.  Amenities may include such things as benches, shelters, 
informational signage, trash receptacles, telephones, vending facilities, and air conditioning 
onboard transit vehicles or inside transit stations.  Transit information may be provided though 
printed maps, posted information onboard vehicles or at stops/stations, onboard announcements 
of stops, telephone information, and World Wide Web sites or electronic mailing lists.  High 
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passenger loads reduce comfort due to overcrowding for passengers taking long trips, as they are 
less likely to find a seat.  The loading factor (ratio of number of seats taken to number of seats 
available) is usually at or lower than 1.0 for long-distance service and may approach 2.0 for 
inner-city service.  Appearance of transit facilities and equipment (including vehicles) can affect 
transit attractiveness, especially to non-riders.  Ride comfort (e.g. comfortable seats) and quality 
(smooth ride) may also affect users’ decision to use transit.  Finally, but not the least, service 
reliability, in terms of schedule adherence and regular headway, is an extremely important aspect 
of service quality.  In addition to these measures, Kittelson & Associates (1999a) defined a 
number of quality of service measures for selected variables including service frequency, service 
hours (service span), transit supportive area covered2 (percent of transit supportive area within 
0.25 mile of transit facilities), passenger loading, on-time performance, headway adherence, and 
difference between transit and automobile travel times. 
 
Besides the quality of service measures defined above, other measures have been developed by 
transit properties.  One example is the percent person-minutes served, developed by Ryus (1998) 
for the Florida Department of Transportation’s Transit Level of Service (TLOS) software.  The 
concept is based on the fact that transit service coverage is determined not only by the spatial 
separation between transit stops/stations to trip origins or destinations, but also by the frequency 
and hours of services.  Therefore, even if street configuration and population or employment 
distribution remains constant, transit availability will improve with more frequent service and 
extended hours as increased opportunities encourage riders to use the service.  The service 
availability from a user’s point of view is thus measured by the percentage of cumulative 
population and employment person-minutes during which a transit vehicle is within the 0.25 mile 
(or 5 minutes) walking distance out of all the population and employment person-minutes (e.g. 
for one service-hour and a community with a population of 1,000, the person-minutes will be 
60,000).  For any moment, the population and employment that have transit available to them 
may be determined by calculating the number of people and employment within a 0.25-mile ring 
centered at the current transit vehicle location.  This approach accounts for the amount of service 
provided to a large extent.  It may be further enhanced by taking into consideration of the uneven 
demand distribution during a day. 
 
A software package is designed to analyze fixed-route service utilizing the concept of percent of 
person-minutes served (PPMS) (Kittelson & Associates, 1999b).  The Transit Level-Of-Service 
(TLOS) software output is to be used to adjust mode split value by multiplying the number of 
non-transit trips by the PPMS value before being inserted in the mode split equation, as follows: 
 

Adjusted  Mode  Split =
# transit trips

# transit trips #auto trips� �PPMS
 

 
In the equation, the transit trips are linked trips.  The adjusted mode split reflects the mode share 
for the area and time for which transit service is available, and can be used to evaluate transit 
service improvements. 
 
                                                 
2  Transit supportive area is defined as one that has a household density of three (3) units per 
gross acre or an employment density of four (4) jobs per acre or higher. 
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Rood (1997) developed the Local Index of Transit Availability (LITA) to measure transit 
availability through a letter grade system.  Using this system, scores are computed for service 
frequency (weekly average of number of vehicles per day), capacity (seat-miles divided by a 
combined population and employment), and route coverage (transit stops per square mile) for 
areas served by transit.  The variance of the raw score of each category is divided by the standard 
deviation of that category.  The letter grade is then determined based on the average of the three 
scores for each area.  This measure is designed to compare transit availability in different areas 
instead of being an absolute measure. 
 
Vaga and Shortreed (1982) studied the negative impact of transfers.  They used a logit model for 
transit mode choice and assumed the disutility function with the following form: 
 
 U = constant + 0.03 (difference in transit and auto in-vehicle-times) + 0.08 (difference 

in transit and auto out-of-vehicle time3) + β (transfer time) 
 
The authors illustrated that with commonly calibrated β values (0.08, 0.1, and 0.2) and an initial 
mode split of 8 percent, a five-minute transfer time would result in 31.2 percent decrease in 
transit ridership if the typical transfer time to in-vehicle time of 3.0 was assumed.  The same 
transfer time would result in a 28.5 percent decrease in transit demand if the initial mode split 
was assumed to be 20 percent, and a 20 percent decrease if the initial mode split was 50 percent. 
 
2.2 Accessibility to Opportunities and Pedestrian Accessibility 
 
Accessibility has been recognized as one of the most important factors that affect both land use 
and travel behavior.  How to define and measure accessibility has attracted the attention of many 
researchers and many forms of accessibility measures have been developed, which Richardson 
and Young (1982) classifed into a spectrum of accessibility measures as shown in Table 2-1. 
 
The logit model logsum term is given by: 
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where  Ai = accessibility index; 
 Bk  = benefits gained by participating in activity at site k; 
 Cik  = cost of travel between sites i and k; and  
 c  = a sensitivity coefficient.   
 
Richardson and Young considered the above measures of accessibility to have one major 
deficiency: in the calculation of accessibility of a point within a region, it was assumed that all 
trips that contribute to the accessibility of that point start from that single point.  Instead, these 
authors proposed that the choice of a destination does not depend on the travel cost between that 
destination and the origin for linked trips, but depends instead on the cost of travel between that 
destination and the immediately preceding destination, and so on.  For a linked trip with two 
destinations, the linked accessibility of a site o is given by 

                                                 
3  The transfer time is excluded from the out-of-vehicle time. 
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Table 2-1. Summary of Accessibility Measures  
Accessibility Measures Features 

Topological Indicates if two points are connected by a transportation link 

Modal accessibility The degree of connectivity of two places depending on the modes 
available.  

Temporal accessibility Accessibility varying during different time periods (e.g. transit service is 
available only part of a day).  (PPMS utilizes this concept.) 

Legal accessibility 
Limitations or restrictions to accessibility by legal or regulatory rules 
(e.g. special permits issued to allow access to a certain area, one-way 
traffic rules, and denial of access to the transportation system to certain 
population groups). 

Relative accessibility Ease of travel between two points (e.g. a residential location and an 
employment center) based on travel time or cost 

Integral accessibility Ease of travel between one point and multiple different points based on 
travel time or cost 

Place accessibility Only spatial separation between one place and other places accounted for

Activity accessibility Activities at destinations accounted for explicitly 

Cumulative opportunity index Number of opportunities (e.g. jobs) reachable from the origin within a 
predefined travel time or cost 

Gravity type measures Sum of opportunities weighted by travel time or cost 

Logit model logsum term Based on logit model; log sum of expected value of the maximum utility 
to be gained in destination choice situation 

 
 � � � �LA B B B C C Co x y o ox oy xy� � � � � � �ln2  
 
where  LAo  =  the linked accessibility of site o; 
 Bi (i = x, y, o)  = benefit to be gained by participating in activity at site i; and 
 Cij (i = o, x and j = x, y)  = travel cost between sites i and j. 
 
It was demonstrated that in the case of two-destination linked trips, accessibility calculated as the 
logit model logsum term would be significantly underestimated when the origin was far from the 
center point between the two destinations.  In other words, as the distance between the 
destinations and the origin increases, the linked accessibility will better reflect the benefit of 
making a linked trip, which reduces the travel time as compared to two unlinked trips.  One 
important implication is that the accessibility of a suburban resident may be improved by linking 
trips and thus long distance from the urban core may not be as large a deterrent to urban sprawl 
as expected if unlinked accessibility is used. 
 
Allen et al. (1993) considered that the relative or integral accessibility in its original form or 
modified forms did not reflect the overall accessibility in an area.  Consequently, they developed 
an area accessibility measure that was based on the average of the integral accessibility of a set 



 17 
 

 

of random points to other points in the area, and showed that if a rectangular area of dimensions 
X and Y was divided such that there were I and J equally spaced internal points in the rectangle, 
respectively, then the average accessibility, E, would be 
 

 E
X X

I
Y Y

J
� � � �

3 3 3 3
 

 
When J and I become large, E may be approximated by (X + Y)/3.  Using this accessibility 
measure, Allen et al. studied the employment growth rates in major U.S. metropolitan areas 
using regression, showing that the accessibility index was significant at 0.02 level (p-value) 
based on the regression results. 
 
An application of a gravity type accessibility measure to study travel behaviors is described in 
Kockelman (1997).  The accessibility index was defined as the sum of all attractions (e.g. 
employment) weighted by friction terms that reflect the ease of travel between a location and 
those activity centers.  Zonal attractiveness may be measured by total employment or 
commercial and service employment.  The friction term f(tij) often  assumes an exponential form 
with coefficients estimated by Levinson and Kumar (1995). 
 
Pedestrian accessibility to transit has been long recognized as important in determining ridership.  
Transit use decreases as the walk distance to a transit stop or station increases.  It will sharply 
drop in most areas after the first 0.06 mile (100 meters), and will diminish beyond 0.36 mile (600 
meters) (Lam and Morrall, 1982; Levinson and Brown-West, 1984).  Loutzenheiser (1997) 
examined pedestrian access to Bay Area Rapid Transit (BART) stations in order to investigate 
the characteristics of walking trips and determine why people choose to walk to BART.  A travel 
survey of BART users was used to develop disaggregate discrete choice logit models of walk 
access.  Walking distance, gender, ethnicity, age, and car availability were identified as the most 
important characteristics affecting the choice of walk mode.  Men were found to be more likely 
to walk than women; safety concerns were cited as prevalent among female riders.  Blacks and 
Asians were less likely to walk.  While Asians seemed to prefer transit to walking, blacks were 
more likely to drive than walk.  Senior citizens, who comprised a small percentage of the 
surveyed riders, were less likely to walk.  Availability of transit to access the BART station had a 
positive impact on transit use, which the author identified as an indirect result of transit 
availability due to transit oriented developments.  Income was not a significant factor among 
riders who chose to take transit instead of walking.  However, high income and car ownership 
were identified as disincentives to walking.  By analyzing areas around BART stations, density 
alone was found to be significant, but was insignificant after individual characteristics were 
accounted for.  The author concluded that individual characteristics such as gender, ethnicity, 
and age were more significant than urban design variables.  Additionally, for every additional 0.3 
mile from a station, the probability of an individual choosing to walk to BART station decreases 
by 50 percent. 
 
Zonal residential population and number of employees within walking distance of transit stops or 
routes have long been considered significant contributing factors of transit use.  Traditional 
methods are based on the buffer zone analysis, which assumes that population and employment 
are evenly distributed throughout a traffic analysis zone (TAZ).  Several studies have shown that 
the buffer analysis method usually overestimates access to transit, resulting in inaccurate 
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forecasts.  O’Neill et al. (1995) developed a GIS procedure (referred to as the “network-ratio 
method” hereafter) for performing transit service area analysis using the street network map, 
census block, and bus stop table databases.  The method assumes an evenly distributed 
population along streets, as opposed to throughout the TAZ.  Therefore, for each TAZ, it 
estimates the portion of population within transit service coverage according to the ratio of the 
total length of streets that are within 1/4-mile walking distance to that of all streets in the TAZ.  
The results showed that the network-ratio method was more accurate in determining the 
household units in residential areas that had developed along a modified grid street network.  The 
same method was also used by Hsiao et al. (1997) to link transit ridership to land use, pedestrian 
accessibility, and demographic characteristics.  The proportions of population with access to 
transit in areas with different street configurations were compared using the network-based 
method and buffer method.  The network-based method yielded lower estimates of accessibility 
than the buffer method, and more importantly, the accessibility in areas with primarily gridded 
streets was higher than in areas with primarily irregular street patterns.  A comparison of the 
percentage of transit users among workers that were in a low income group (income < $25,000) 
and higher income group (income > $25,000) indicated that workers with lower income were 
more likely to use transit.  However, for both income groups, better transit accessibility increased 
the likelihood of transit use.  A similar comparison between groups of different levels of 
automobile ownership yielded similar results.  The study, however, did not control other factors 
that may have impacts on transit use. 
 
Zhao (1998) modified the network-based method by utilizing additional information on land uses 
such as single-family and multi-family population, and by incorporating natural and manmade 
barriers that prevent access from residential areas to public transit stops.  It was demonstrated 
that the modified network-ratio method was able to account for better density variations among 
different land uses, particularly for residential developments, and that barriers could have a 
significant negative impact on transit walk access, especially in areas with new developments 
surrounded by community walls. 
 
2.3 Transit Ridership Forecasting Models  
 
This section reviews literature on transit ridership analysis and forecasting models.  Innovative, 
state-of-the-art general travel demand models that incorporate variables other than the common 
travel time and travel time typically included in modal split models are summarized first.  
Literature on special purpose transit ridership modeling is then reviewed. 
 
2.3.1 State-of-the-Art General Purpose Travel Demand Models 
 
The Sacramento regional travel demand model possesses some interesting features (DKS 
Associates 1994).  Some of the important features include: (1) the feedback of assigned travel 
impedances to the trip distribution module; (2) the utilization of accessibility variables in 
automobile ownership and trip generation steps; (3) a joint destination and mode choice model 
for work trips; (4) a mode choice model including walk-and-bike, walk-and-drive transit access, 
and two-car pool modes; and (5) the inclusion of land use and household attribute variables in 
the mode choice models in addition to travel costs and time. 
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A travel demand model is currently being developed for the San Francisco County 
Transportation Authority (SFCTA) (Parsons Brinckerhoff, 2000).   Two distinct sets of mode 
choice models have been calibrated: (1) the tour mode choice models determine the primary 
mode for the tour; (2) the trip mode choice models determine the mode for each individual trip 
made on that tour, based on the mode chosen for the tour.  There is one of each of the tour and 
trip models for each tour purpose (Work, School, Other, and Work-Based).  The modes defined 
for trip mode choice model estimation include: Drive-Alone, Shared-Ride (2 person carpools), 
Shared-Ride (3+ person carpools), Walk, Bike, Walk-Local-Walk (WLW), Walk-MUNI-Walk 
(WMW), Walk-Premium-Walk (WPW), Walk-Premium-Auto (WPA), Auto-Premium-Walk 
(APW), Walk-BART-Walk (WBW), Walk-BART-Auto (WBA), Auto-BART-Walk (ABW).  
The variables included in each nested mode choice model, either for tours or trips, are: (1) 
“traditional” level-of-service variables (e.g., in-vehicle time, first and second wait time for 
transit, walk-access time); (2) tour chain type variables (number of stops); (3) pedestrian 
environment factor variables; (4) and household variables.  The tour mode choice model 
structure nests auto modes together (Auto Driver and Auto Passenger), non-motorized modes 
(Walk and Bicycle), and transit modes (Walk-Access and Drive-Access), respectively.  The 
nested model structure for trip mode choice is consistent with that of the tour mode choice 
models.  However, the access mode in the transit nest (walk vs. drive) is higher in the nesting 
structure than are the transit sub-modes. 
 
The Metro of Portland Oregon is undertaking an effort in the estimation of a new mode choice 
model, which is an element of the first major update of Portland’s trip-based model structure in 
the last six years.  A multinomial logit procedure is applied to estimate the mode choice models 
(Metro, 2000).  Eight trip purposes are classified: HBW (Home-Based Work), Hbshop (Home-
Based Shop), Hbrec (Home-Based Recreation), Hboth (Home-Based Other), NHBW (Non-
Home-Based Work), NHBNW (Non-Home-Based Non-Work), HBsch (Home-Based School), 
and HBcoll (Home-Based College).  In this study, eight discrete modes are available, except for 
HBcoll trips, in the mode choice set: drive alone, drive with passenger, auto passenger (e.g., car 
pool), bus by walk access, MAX4 (with or without bus) by walk access, transit (bus and/or 
MAX) by park & ride access, bike, and walk.  For HBcoll trips, the mode choice set is limited to 
auto, transit, and bike/walk modes.  HBcoll bike/walk trips are removed from total HBcoll trips 
prior to separating the auto and transit mode choices.   Probabilities are applied to distribute trips 
for each purpose to determine the number of trips by each mode.  The variables included in the 
utility models for mode choices of different trip purposes are varied.  The variables are 
generalized as follows: travel time, travel cost, income, employment, accessibility (defined by 
number of intersections within ½ mile from home), land use mix (based on the household and 
employment numbers within a certain distance of a zone), number of workers, car ownership, 
and household structure.  The final calibration of the model will be completed shortly later in 
2001. 
 
2.3.2 Models Designed for Transit Ridership Forecast 
 
While most urban areas use general-purpose four-step models that forecast both automobile and 
transit travel demands, models for forecasting transit trips have been developed for several 
reasons.  One reason is that a regional travel model requires a large amount of data collection and 

                                                 
4  MAX is the Portland light rail system. 
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is complex to calibrate, validate, and apply.  Another reason is that such a model lacks accuracy 
at the corridor or route level, making results unsuitable for determining needed adjustments for 
local service.  Furthermore, most four-step models do not adequately account for the variables 
that affect transit ridership. 
 
Horowitz (1985) developed a transit ridership forecast model based on the four-step model 
concept.  The mode split is determined using a logit model and is based on measures of trip 
dissatisfaction, which are expressed as a combination of trip time and trip cost: 
 
 for car  [ ]a a c a e M Vij ij j ij

' ( ) /= + + +2  

 for bus t t F Vij ij
' /= +  

 
where  aij =  automobile travel time between zone i and zone j; 
  cj = automobile cost at zone j; 
 M  = automobile cost per minute of travel 
 V  = value of time 
 tij = transit travel time (including weighted walk time, weighted waiting time, wait 

penalty, weighted transfer time and transfer penalty); and  
 F  = transit fare. 
 
Koppelman (1983) developed a simplified form of the multinomial logit model and applied it to 
the prediction of travel mode shares for a range of transit service changes.  Changes in ridership 
due to new service changes are determined by an incremental logit equation in which utility is a 
function of the change in in-vehicle travel time, out-of-vehicle travel time, and out-of-pocket 
cost.  No model calibration was performed.  Variables and their coefficients in the logit model 
for determining transit mode share were “judgmentally selected” by the author based on model 
coefficients from seven urban areas.  The utility model for transit service in the paper is 
illustrated as follows: 
  
 UT = � 0.016 (In-vehicle travel time) � 0.17 / (Distance in Mile) (Out-of-vehicle travel 

time) � 0.0044 (Out-of-pocket cost) 
 
Nickesen et al. (1983) developed another simple transit ridership estimation model system for 
short-range planning.  A sequence of simple trip generation, trip distribution and modal split 
models generate trip-purpose specific transit trip table, denoted as “trial” trip tables.  A linear 
programming model converted the trial trip table into the final transit trip table, which nearly 
replicated the observed link volumes and was as close as possible to the trial trip table.  The 
effort was aimed at refining the results from a logit modal split model with borrowed 
coefficients. 
 
In Levinson (1985), the ridership potential of various public transportation options was estimated 
based on the following information: (1) corridor population and employment growth; (2) changes 
in service levels resulting from the various options; and (3) effects of changes in gasoline price, 
parking costs, and increased traffic congestion.  General growth trends were derived from an 
analysis of actual experience and agency forecasts, which were then modified as appropriate to 
reflect results of the 1980 Census and likely development in the study area.  Bus ridership was 
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estimated for 1985 and 2000 by applying both average and sectional growth factors.  In both 
cases, it was assumed that sufficient service adjustments would be made to enable ridership to 
keep pace with corridor population and economic growth and that there would be no fare 
increases, relative to the base year, in real dollars.  This author concluded that bus ridership 
would not keep pace with population and economic growth unless service was improved. 
 
Eash et al. (1993) developed a spreadsheet version of the Chicago Area Transportation Study’s 
mode choice model to estimate how service changes for the west-side rail lines affect ridership.  
The data utilized include a zonal trip table, existing line-haul and access time and costs, and 
service change scenarios. 
 
In Dehghani and Harvey (1994) described a fully incremental logit model for the Seattle-area 
transit forecast.  Forecasts were made based on the differences from an existing situation instead 
of an entirely new set of variables.  The data used in the model included transit onboard survey, 
transit travel time and cost, automobile travel time and cost, transit walk access, and automobile 
access. These variables are commonly used in the modal split in traditional four-step models. 
 
To deal with short-term transit ridership fluctuations, Seattle’s Metro Transit developed a simple 
statistical model that forecast short-term ridership based on gasoline price, gasoline supply, 
service changes, fare changes, and employment (Ulberg, 1982).  Other factors, such as service 
quality, population, CBD employment, parking prices, fuel efficiency of cars, and data 
disaggregated by time of day, route, or region served, were also considered but rejected because 
of lack of data or predicting power.  The analysis is a time series based on the dependent 
variable: monthly change in seasonally adjusted weekly ridership.  Ridership data were estimated 
from revenue data and adjusted for seasonal changes to obtain average monthly ridership. By 
studying the time lag effect of gasoline price on ridership, two months’ lag time was found to 
result in the lowest residual, which was converted to the equivalent monthly change.  Transit 
service was measured by monthly service hours.  Employment was obtained monthly from the 
Washington State Employment Security Department for the entire service area.  Employment 
was adjusted for seasonal changes and a time lag of three months was determined.  A multiple 
regression model (R2 = 0.694) was estimated using the above predictors and eight years of data.  
All predictors except service hours were significant.  The authors offered explanations for the 
insignificance of service hours as being too gross a measure of service quality, the possible long 
lag between addition of service hours and new ridership in some areas, the Seattle transit riders 
being mostly marginal riders, on whom economic factors had more influence, and the fact that 
service changes resulted in ridership changes instead of the other way around.  The model was 
able to predict ridership for 1980 and 1981 with an error of 0.9 and 1.7 percent, respectively.  An 
examination of the stability of the model coefficients by estimating regression models using a 
subset of data and comparing the coefficients revealed that all coefficients except that for 
employment were stable.  The instability in the employment coefficient was considered to be a 
result of the saturation of transit services that came later that could no longer attract ridership 
from existing employment, and new ridership that had to come from new employment. 
 
Another short-term transit ridership forecasting model was reported in Nelson and O'Neil (1982).  
The multiple regression model has ten predictors for the dependent variable: home-based transit 
trips per thousand zonal population.  The home-based transit trips were estimated based on a 
1981 onboard survey; responses represent nearly 25 percent of total boardings.  The survey data 
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were adjusted and expanded for 298 residential zones.  121 additional zones were not included 
because either the zones had too few dwelling units to ensure unbiased data or accurate 
socioeconomic data were unavailable.  The predictors were grouped into two categories: (1) level 
of service (LOS) and (2) socioeconomic and land use.  The LOS variables include composite in-
vehicle travel time, composite transit wait time, composite number of transfers, number of routes 
serving a zone, and a dummy variable assigned to zones at the end of major transit corridors to 
control external trip assignments in those zones.  Socioeconomic and land use variables include 
percentage of single-family homes in a zone (population or dwelling unit density were found to 
be correlated with LOS variables), commercial and service employment density, ratio of 
industrial employment to number of households (negatively impacting transit use), percentage of 
people aged 18 and over that were estimated to be employed, and average zonal household size.  
Elderly population was considered to be an important factor but was not used because of lack of 
data.  Income and auto ownership also were not found to be negative factors as expected.  The 
least square multiple regression technique was applied to calibrate the model.  Independent 
variables for LOS measures were constructed by taking the weighted average derived from the 
estimated total daytime population of each major destination area in order to reduce the 
multicollinearity effect.  The model achieved an adjusted R2 of 0.7289.  While the model 
appeared to perform well based on a comparison of the predicted ridership by the model to the 
actual ridership, it is unclear from the paper if the test data set was part of the model 
development data or not.  The model did produce accurate results when additional services were 
added, increasing the number of routes in nine zones.  The model predicted 74 to 81 new transit 
trips (the model prediction adjusted for non-home trips, which accounted for about 17 percent 
system-wide) compared to the actual 81 trips observed over a four-month period after the 
implementation of the service change. 
 
In a study of public transit alternatives in the Forest Hills-Needham corridor, factors that were 
considered to produce the most significant mode shift included levels of service offered by 
different transit alternatives, out-of-pocket costs of using alternative modes, personal income, 
and automobile ownership (Harrington and Carakatsane, 1984).  The transit alternatives included 
two that would combine commuter rail service and different local bus feeder services and one 
that would consist of express and local bus services with no commuter rail service.  Data related 
to population, automobile ownership, mean income, percent of population living below poverty 
level, employment by types (private, manufacturing, and service), transit access modes (drive-
alone park-n-ride, carpool, kiss-n-ride, walk, and other), transit ridership, transit levels of 
service, fuel price, travel time were compiled.  Forecasting of ridership for the different 
alternatives involve three steps.  Step one: intermediate total transit trip production in the 
forecast year was obtained by summing the zonal base year transit ridership, which was adjusted 
for changes in population, fuel price, per capita income, and per capita automobile registration.  
The elasticities used for these adjustment terms were 0.35, � 0.29 (for the rail alternative, 0.25 
for the bus alternatives), and � 0.6, respectively; Step two: the intermediate total ridership among 
production and attraction zones were allocated according to the ratio of zonal total trip 
production to area-wide total trip production, both adjusted by changes in employment, fuel 
price, and per capita income.  The elasticity of total trip production with respect to employment 
was assumed 1.0. Step three: ridership for different alternatives was estimated by considering 
levels of service factors such as fare, between-station travel time, and access time. 
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Black (1993) tested a regression model for estimating rural transit ridership based on population 
over age 55, transit system size as measured by size of transit network in kilometers, and local 
(county) monthly rents.  The R2 was 0.986, but no additional information about the model was 
provided. 
 
Multisystems5 developed a route-level transit ridership forecast model, the “Period Route 
Segment Model,” for the Southern California Rapid Transit District (Batchelder et al., 1983).  
The model estimates the morning peak and the midday boarding in each direction for every 
segment of a route based on segment-specific demographics, attractions, and level of service.  
The model takes the following form: 
 
 BOARD PROD OPP LOSi

d
i i

d
i
d

� � �  
 
where  BOARDi

d = boarding count on segment i in direction d;  
 PRODi  = production factor in area surrounding segment i; 
 OPPi

d   =  trip opportunity factor in direction d from zone i; and 
 LOSi

d   =  level-of-service factor in segment i in direction d. 
 
The transit trip production factor was computed for each segment of a route based on average 
monthly rent, total population and adult population (a surrogate for number of workers) that 
lived within walking distance (0.25 mile) of transit, number of riders on other transit routes that 
crossed or fed the route to be a proxy for transfers, and the route length in the TAZ.  The 
population and adult population were estimated using a buffer zone method assuming their 
distributions are uniform throughout the TAZ.  The opportunity factor for morning peak, e.g., 
OPPi

d, was computed as follows: 
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where  AFACi = an income adjustment factor; 
 ADULTi = the adult population near route i; 
 EMPLd

6-35 =  the employment size within 0.25 mile of the route, in direction d, and 
within 6 to 35 minutes of bus ride; 

 EMPLd
3-15 = the employment size within 0.25 mile of the route, in direction d, and 

within 3 to 15 minutes of bus ride; 
 POPd

6-35 =  the population size within 0.25 mile of the route, in direction d, and 
within 6 to 35 minutes of bus ride; 

                                                 
5  Multiplications Inc., Multisystems, the Consulting Division, 1050 Massachusetts Avenue, 
Cambridge, MA 02138. 
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 POPd
3-15 =  the population size within 0.25 mile of the route, in direction d, and 

within 3 to 15 minutes of bus ride; and 
 XRIDERi = the riders on routes that cross or feed into segment i. 
 
The transit level-of-service factor was calculated as the product of the wait time and seat 
availability at segment i in direction d.  The wait time depends on the headway, and seat 
availability depends on the cumulative length of the route from the origin to segment i, assuming 
the end of the route is a CBD.  This model is interesting because it includes some factors, such as 
route level service quality and opportunity along a route, absent from other models that may 
contribute to transit ridership.  Azar and Ferrira (1994) was later applied this model by using data 
from the Boston area to demonstrate the integration of the model with a GIS tool to allow transit 
planners to determine necessary service changes. 
 
One important fact about transit ridership is that transit demand and supply are not independent 
of each other.  Transit services are typically adjusted periodically (e.g., once a year) based on the 
past ridership levels and trends.  Service changes in turn will have an impact on future ridership, 
although the impact is not immediate.  To account for this interaction between the transit demand 
and supply, a simultaneous route-level ridership model that considers the demand, supply, and 
inter-route relationship was developed by Peng et al. (1997).  The model consists of three 
equations to describe the demand, supply, and competing routes.  The basic unit of observation is 
the route segment within a fare zone.  For instance, when the model was applied to the Tri-Met 
service area, transit routes were segmented by four fare zones.  Ten models developed for five 
periods (morning peak, mid-day, afternoon peak, evening, and night) and for two directions 
(inbound and outbound).  The models were estimated using a three-stage least squares for all 
transit routes in the Tri-Met service area, and have the following form: 
 
Demand 
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Competing Routes 
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R  = boarding rides; 
Rkz  = alighting from complementary routes k in zone z; 
Service Time = total minutes of service in a service period (e.g., AM peak, PM peak, off-

peak) 
S  = service supply as measured by the total number of seats supplied during the 

service period; 
POP  = population within a quarter-mile buffer of a bus route or around a light rail 

station (referred to as transit service area); 
INC  = number of households with income less than $25,000 in 1990 in a transit 

service area; 
EMPDEN = number of employees per acre in 1990; 
PARK  = total number of parking spaces in Tri-Met park-n-ride lots within service area 

of route i; 
R-1i  = previous year ridership on route i; 
OVPOPPC = percentage of population in the overlapping portion of the transit service areas 

of two competing routes; 
FRQ  = number of buses per hour; 
CROSTWND = crosstown route typology dummy variable; 
FEEDERD =  feeder route typology dummy variable; 
FAREZN1D = fare zone dummy variable (fare zone 1); 
FAREZN2D = fare zone dummy variable (fare zone 2); and 
FAREZN3D = fare zone dummy variable (fare zone 3). 
 
The models confirm the interactions between demand and supply, as well as the negative effects 
of competing routes.  Additionally, the model indicates that inbound demand is mainly 
determined by population size at places of residence, while outbound demand by employment 
density.  Parking availability at Park-and-Ride lots influences the morning peak and mid-day 
inbound demand.  Results indicated that income was a strong factor contributing to inbound 
demand in the mid-day, afternoon-peak, and evening periods, but was not significant in the 
morning peak period.  The authors contended that individuals who used transit during the 
morning peak hours were more likely to be choice riders while those during the other periods 
were the captive riders.  The models also show that demand decreases as the distance from 
downtown increases. 
 
Pendyala (1999) also developed a transit supply-demand model that consisted of a set of 
simultaneous equations.  The Integrated Transit demand and SUPply model (ITSUP) was 
developed using demographic and socioeconomic data of Volusia County and transit system 
route data from Volusia County transit agency (VOTRAN).  ITSUP is intended for planning 
service adjustments in the short-term as well as estimating the impact of service changes on 
ridership.  It consists of three equations: one for estimating transit demand; one for estimating 
transit supply; and one for representing inter-route relationships.  Using the three equations, the 
model interactively computes ridership and service supply on each route segment, defined as the 
transit link between two bus stops, until convergence is achieved.  The default equations are: 
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Ridership Equation 
 
 RIDER = 23 + 0.0107 * HH_LT_25K + 0.013 * POPULATION + 0.303 * SRVC - 0.121 

* CMPT_EQN*CMPT_RATIO + 0.162 * CMPL_EQN 
 
Supply Equation 
 
 SRVC = 127.67 + 0.327 * WRKR_DNSTY - 0.0045 * POPULATION + 0.155 RIDERS 
 
Inter-Route Equations 
 
Competing Routes 
 
 CMPT_EQN = 29.738 - 0.177 * SRVC * CMPT_RATIO + 9.077 * CMPT_FREQ - 

0.0188 * CMPT_OVPOP + 0.018 * CMPT_POP 
 
Complementary Routes 
 
 CMPL_EQN = 29.738 - 0.177 * SRVC * CMPL_RATIO + 9.077 * CMPL_FREQ - 

0.0188 * CMPT_OVPOP + 0.018 * CMPL_POP 
 

where RIDERS = daily 24-hour ridership on a route segment; 
 SRVC  = total daily seats supply on route segment; 
 HH_LT_25K  = number of households residing in ¼-mile buffer around route 

segment with annual 1990 income less than or equal to $25,000; 
 POPULATION = total number of persons residing in ¼-mile buffer around route 

segment; 
 WRKR_DNSTY  = employment density in ¼-mile buffer around route segment; 
 CMPT_EQN  = number of riders on competing route segments; 
 CMPL_EQN   = number of riders on complementary route segments; 

 CMPT_RATIO = ratio of the population in the overlap area of two competing route 
buffers over the total population in the subject route and competing 
route buffers; 

 CMPT_POP  = population in the competing route buffers; 
 CMPL_POP  = population in the complementary route buffers; 
 CMPT_OVPOP = population in the overlap area of competing route buffers; 
 CMPT_FEEQ   = frequency of service on competing routes; and 

 CMPL_FREQ  = frequency of service on complementary routes. 
 
Users may specify new equations appropriate for their own areas.  This approach to a transit 
ridership model recognizes that transit service quantity and quality are not exogenous to 
ridership.  Rather than assuming that ridership will increase with route density, the model also 
considers the competition among different routes for transit ridership, as ridership is unlikely to 
grow at the same rate at which route density increases. 
 
A bus service planning and marketing model that utilizes a GIS approach is described in Hunt et 
al. (1986).  The model consists of two regression models, one for residential locations and the 
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other for workplaces.  The model by residence incorporates variables representing population 
density, proportion of white population in a census tract, proportion of zero car households, and 
percentage of census tract area falling in the 0.25-mile buffer around transit route multiplied by 
the total number of buses passing through the service area.  The workplace model includes 
variables representing employment density in the destination census tract, proportion of 
workforce that is white, proportion of households in workforce with no automobile available, 
and combined bus frequency.  The residence model has a R2 of 0.84, while the workplace model 
has a R2 of 0.41.  The model may be used to predict ridership at route level and examine the 
effects of demographic and transit service changes. 
 
Nelson et al. (1997) analyzed the characteristics of the population in Atlanta’s northern affluent 
tier, including their demographic, socioeconomic, and trip characteristics.  The authors found 
that riders were encouraged to use transit when they had easy access to stations and accessibility 
by rail to major employment centers even if they were in a high-income bracket.  On the other 
hand, disincentives to rail service use included long walking distance or the need to ride a bus to 
access rail stations.  Affluent suburban workers also tended to drive to rail stations, making 
ample park-n-ride facilities necessary to ensure good ridership. 
 
Based on regression analyses, Tri-Met in Portland determined that housing density, employment 
density, and retail employment density were the most significant variables in the Portland area in 
determining transit ridership, accounting for 81% of the variations (Nelson\Nygaard Consulting 
Associates, 1997).  A regression model estimated future year ridership levels, which were then 
converted to a transit orientation index (TOI) to measure transit ridership potential.  The index 
values were then used to determine which areas needed to be given priority for transit service 
improvements to maximize the ridership.  This index alone, however, does not reflect the 
deficiency or the need of transit services in an area.  To maximize ridership, improvements 
should be made where the greatest potential to increase ridership exist.  
 
A GIS-based transit forecasting approach to modeling transit ridership in tourist corridors is 
described in Preslar (1998).  The corridor was the 6.0-mile International Drive with a high 
concentration of tourist attractions (Universal Studio, Sea World, Convention Center) and 18,000 
hotel rooms.  Data were aggregated using GIS at the parcel level, which included information 
such as land use, dwelling units, hotel rooms, square footage of retail space, and number of 
employees.  The front door locations of buildings were also geocoded to allow accurate estimates 
of walking distance.  A four-step model was used for ridership forecasting. 
 
Some studies have focused on answering specific questions on how certain factors influenced 
transit use.  Spillar and Rutherford (1990) examined the relationship between income, density, 
and transit ridership at the route level in western American cities.  Per capita transit ridership 
data were derived from the 1980 Census, calculated by dividing total zonal transit ridership by 
total zonal population.  The Census data also provided information on income distribution.  The 
percentage of all families in each tract earning less than $10,000 was calculated for each tract.  
The census tracts were then divided into subgroups according to this calculated income 
characteristic.  One group, the 18% group, consisted of census tracts with fewer than 18% of low 
income families.  The second group, the 82% group, consisted of census tracts containing 18% or 
more families with low income.  A non-linear regression technique was used to regress against 
the primary variable of zonal gross population density for the following three household groups: 
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total, 18% income households, and 82% households.  The authors concluded that the relationship 
between per capita transit ridership and gross population density was a second order polynomial 
type function, increasing rapidly as very low densities increase, and then curving at some 
maximum value once a specific density level was achieved.  Income groupings displayed slightly 
different per capita ridership characteristics. 
 
According to a study on bus route demand in Cleveland by Krechmer and Lantos (1983), bus-to-
rail transfer is mainly determined by the in-vehicle travel between trip origin to rail station, while 
bus-to-bus transfer is minimum and is related to the frequency of the two bus routes, as follows: 
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where  PTab  = percentage of passengers transferring from bus route “a” to bus route “b”; 
 CHa  = combined headway (minutes) for bus route “a”; and 
 CHb  = combined headway (minutes) for bus route “b”. 
 
The R2 of the model was 0.55.  The model was developed using data from Cleveland and may 
not be applicable to other areas, which have different transit services and demographic and 
socioeconomic characteristics.  A report prepared by the Central Planning Staff for the Federal 
Transit Administration (1997) states that transfer penalties may be quantified and are equivalent 
to12~15 minutes per transfer depending on the particular model specification. 
 
When transit planners use a simpler model specially design for transit ridership estimation in 
place of a regional four-step model, they utilize longitudinal data, especially ridership trend data.  
Such an example may be found in McLeod Jr. et al. (1991).  Two models were constructed using 
the statistical technique of least squares multiple regression: an annual passenger revenue-trips 
(R-TRIPS) model and an annual linked trips (L-TRIPS) model.  Historical data on a small 
number of economic, demographic, and transportation variables from 1958 to 1986 were used.  
The final models are given as follows: 
 
 R-TRIPS = -118.9 + 52.2 * ln(JOBS) - 60.9 * ln(INCOME) - 27.8 * ln(FARE) + 7.9 * 

ln(BUSES) - 4.4 * STRIKES 
 L-TRIPS = -118.3 + 38.2 * ln(JOBS) - 44.1 * ln(INCOME) - 36.0 * ln(FARE) + 10.6 * 

ln(BUSES) - 4.1 * STRIKES 
 
where JOBS = number of civilian jobs; 
 INCOME = per capita income in 1982 dollars ($million); 
 FARE  = fare in 1982 dollars ($million); 
 BUSES  = number of buses in the fleet; and 
 STRIKES = dummy variable for occurrence of strikes. 
 
The following table summarizes the elasticities for all the variables in the two models. 
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Table 2-2. Elasticity of Model Variables 
Variable R-TRIPS Model L-TRIPS Model 

JOBS 1.04 0.64 
INCOME -0.98 -0.59 
FARE -0.56 -0.61 
BUSES 0.25 0.28 

 
According to the authors, the models explained 97 to 98 percent of the variation in the bus 
ridership. 
 
Caution is advised, however, as direct application of trend data in standard regression models 
may cause statistical problems.  Kyte et al. (1985) identify some of the problems as follows: 
 
• A high degree of correlation was found among the input variables; 
• The residuals were highly correlated and not independent as required for regression models; 
• The delay in the response to service level changes would have been missed if only 

contemporaneous correlations were included in the model; and 
• The biased standard errors from the regression model would have erroneously led to 

including variables that were not significant. 
 
To properly utilize trend data, time series analysis is necessary and more appropriate and 
powerful than the traditional regression analysis.  An example of application of this approach is 
presented in Kyte et al. (1985), who employed a statistical approach developed by Box and 
Jenkins (1976) for time-series data known as autoregressive-integrated moving average 
(ARIMA) models (also known as univariate ARIMA models).  Four input variables were used: 
(1) transit service level (platform hours, platform miles, and route miles); (2) transit fare; (3) 
gasoline price; and (4) employment as a measure of the travel market size.  Sixteen transit 
ridership models were developed using data for Portland, Oregon covering 1971 through 1982: 
one for the system as a whole, six representing distinct geographic sectors of the Portland region, 
and nine for individual routes in the Portland transit system.  Kyte et al. determined that the Box-
Jenkins time-series models were appropriate for evaluation and forecasting of transit ridership 
changes.  The lag structure of the market response to the factors that influenced transit ridership 
were identified as follows: 
 

(1) Service level delays ranged from 1 to 10 months for the system model and 0 to 3 
quarters for the sector and route models; 

(2) Fare delays ranged up to 2 quarters. 
(3) Response to gasoline prices and employment level changes are more rapid, though 

lag effects have been found at the route level for up to 3 quarters for gasoline price 
change. 

 
Vaziri at al. (1990) studied temporal variation of specialized transportation monthly ridership 
and demonstrated the superiority of intervention models ridership, or multivariate ARIMA 
models, for time-series analysis over regression models based on the results of analyses of data 
collected over a period of time in Lexington/Fayette County, Kentucky.  One model was 
developed using the entire data set, while ten other models were estimated using one of the 
subsets of the data: passenger type (elderly, handicapped), passenger’s ability to walk 
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(ambulatory, semi-ambulatory, nonambulatory), and trip purpose (medical, employment, 
shopping, education, other).  In sum, 11 regression and 11 intervention models were developed.  
The variables used in the model calibration for both approaches include: the service expansion in 
January 1981 (X1t), Saturday service availability (X2t), the fare increase of July 1984 (X3t), and 
the fare increase of July 1985 (X4t).  Variable X2t was found not significant in all of the 11 
intervention models, while X3t and X4t were not significant in the majority of the models.  The 
authors claim that these models are able to accurately predict the months that have minimum and 
peak ridership. 
 
2.3.3 Dynamic Structural Model 
 
Altinoglu and Smith (1992) proposed in a working paper the application of a Covariance 
Structural Model (CSM), a dynamic structural model, for modeling transit demand using travel 
survey data from 1971, 1981, and 1991.  The CSM has two components: (1) a structural model 
that describes the “unassumed causal structure” and is in the form of simultaneous equations of 
unobserved (latent) variables; and (2) a measurement model that is a simultaneous equation 
relating unobserved (latent) variables to measured variables observed (or measured) variables.  
The authors suggested that the model parameters be estimated by minimizing the difference 
between the estimated covariance and the calculated covariance.  The authors identified three 
types of latent factors: (1) mobility (endogenous); (2) socioeconomic characteristics 
(exdogenous); and (3) individual land use characteristics (endogenous).  The observed indicators 
for these three latent variables are public transit trips, car trips, public transit travel distance, car 
travel distance, car ownership, and public transit and car attributes for mobility; income, 
household size, life cycle of household, number of workers, number of drivers, age, gender, 
education level, company car use, employment category, employment status, ethnic background 
for socioeconomic characteristics; and residential area per individual, employment area per 
individual, residential location, home business/teleworking for land use characteristics.  No 
information on the final outcome of the project is available.  Data for most of the proposed 
variables are, however, available from travel survey data.  Some of the variables are known to 
have direct impact on transit use, such as car ownership, life cycle of household, age, company 
car use, residential area per individual, etc., while the impact of others (such as ethnic 
background and employment category) is uncertain. 
 
2.4 Mode Choice and Urban Forms 
 
The need to understand how urban forms may affect travel behavior has become urgent due to 
recent policy initiatives at the federal, state, and local levels to look for ways to improve mobility 
and reduce congestion without building new highways.  These policy initiatives are motivated by 
the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA), which provided new 
funding opportunities for transportation improvement projects not targeting single-occupancy-
vehicle (SOV) mobility, the Transportation Equity Act for the 21st Century (TEA-21), which 
initiated a new sustainable development pilot program to help state and local governments plan 
environmentally friendly development, the Clean Air Act Amendments of 1990 (CAAA), which 
sets vehicle miles traveled (VMT) as a form of mitigation to meet air quality attainment, rising 
public concerns  about petroleum consumption in the U.S. and global warming, and political 
pressure to reduce fuel consumption.  One of the approaches to reduce VMT is to change travel 
behavior via policies such as taxation, pricing, and land use planning.  The question is therefore 
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whether land use policies that encourage “transit/pedestrian friendly” neighborhoods will be 
effective.  Researchers have been attempting to answer these questions by looking into land use 
factors and their links to travel behavior. 
 
One of the most influential works may be that by Pushkarev and Zupan (1977) who investigated 
the impact of land use, spatial separation, and transit service quality on transit ridership.  The 
land use variables are the suburban residential housing unit density and central business district 
(CBD) floor space, which is used as a proxy of jobs.  Spatial separation is measured by distance 
between the CBD and the residential areas.  By comparing different bus routes, the authors found 
that there was a significant correlation (0.75) between transit use and density.  There is a four 
percent increase of workers using transit for every doubling of density.  The results of their 
analysis lead to several interesting findings: a density of seven to thirty dwelling units per acre is 
the threshold of significant transit use: “high residential density by itself does little for transit if 
there is no dominant place to go to.” They point out, however, that the higher transit ridership 
was not induced by density per se, but was also due to increased availability of employment and 
other opportunities, as well as higher parking cost and more congested roads that have limited 
capacity to accommodate automobiles. 
 
In another study of the 1979 New York Urban Region survey data, Pushkarev and Zupan 
conclud that “there is no statistically significant effect of income on driving once other variables 
(density, household size, number of adults, etc.) are held constant” (Holtzclaw, 1990). 
 
By simple regression, Newman and Kenworth (1989) also find high correlation between 
automobile use (measured by petroleum consumption) and density by studying major cities 
around the world.  Specifically, they found a correlation of -0.74 between urban density and 
private car use, +0.74 between density and transit passenger trips, and -0.76 between density and 
auto ownership.  The correlation between density in central business districts (CBDs) and private 
car use is, however, much lower at -0.14; this might be explained by the fact that other important 
factors such as culture, government policy, gasoline prices, transportation system, transit service 
level, income, etc., were not controlled.  These factors vary significantly in different countries 
and may have an important influence on travel behavior. 
 
Thompson and Frank (1995) argue in their report that transit trip production and automobile trip 
production are independent to a certain degree.  They point out that introduction of a new mode 
tends to cause increased travel in addition to causing mode shift.  On the other hand, inferior 
modes may also have their own market.  Traditional four-step models do not account for the 
independency of trip productions by different modes and tend to ignore the fact that trip rates 
may be affected by transit service and quality and roadway congestion level.  The authors believe 
that studies supporting the claim that urban form and socioeconomic variables determine transit 
success or failure do not adequately control transit level of service, and studies concluding transit 
level of service is important do not control adequately for socioeconomic variables.  In their 
study, Thompson and Frank attempt to control both sets of variables by studying transit ridership 
between two points as a function of mobility between the two points by transit and automobile, 
population and employment density, income and transit dependence characteristics, and design 
features of the two points.  The model assumes a general form of the double constrained gravity 
model, in which the “production” and “attraction” terms interact with each other.  The authors 
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argue that while the model needs significant improvements, it is potentially less cumbersome and 
theoretically more accurate than the traditional four-step models. 
 
In a 1996 study, Gray and Thompson (1996) test the interaction between urban form, transit 
route configuration and transit demand.  A set of four models are established: a single-occupancy 
auto trip model, a car-pool trip model, a transit trip model, and a biking and walking model.  The 
explanatory variables include zonal population density, employment density, service 
employment, proportion of population of age 16 or younger, proportion of population of age over 
65, ratio of male population, zero-car households, total employment, ratio of employment to 
population in origin zone, ratio of service employment to total employment, proportion of 
population in households with income lower than $15,000, congested auto travel time, tolls, 
transit travel time, and straight line distance between origin and destination zones.  Data for the 
dependent variables were taken from the Census Transportation Planning Package (CTPP) for 
Orange County, Florida for 1990.  For independent variables, socioeconomic data came from 
CTPP while network, tolls, and travel times were from the regional demand model.  The models 
were estimated using poisson regression.  While some of the variables were statistically 
significant, the models generally had little explanatory powers.  The SOV model had a R2 of 
0.12, with destination employment density, parking fees, and origin mixed use (employment to 
population ratio) being significant.  The R2 values for the other three models were 0.05 or less.  
One possible cause for the weak models was considered by the author to be the zero-inflation 
problem: too many dependent variables (90% ~ 98%) had zero values.  
 
An empirical study was performed by Frank and Pivo (1994) to determine if density was a proxy 
of other factors or itself caused a difference in mode choice, with the purpose of discovering 
ways to implement urban forms that promote accessibility in urban areas.  By analyzing mode 
choice for work and shopping trips based on land use variables such as population density, 
employment density, and land use mix at census tract level, life-style variables such as age 
distribution within a surveyed household and mean age of survey participants per census tract, 
and other non-urban-form variables including proportions of survey participants with a driver’s 
license, mean number of vehicles for survey participants ending trips in a census tract, and 
proportions of transit trip ends made by survey participants employed outside home, by those 
participants who had a bus pass, and by those who had access to less than one vehicle.  The land 
use mix was measured by an entropy index defined as follows: 
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Multivariate regression analyses showed that urban-form variables entered after including 
significant non-urban-form variables in the models did contribute to mode choice, with positive 
impact on transit use and walk and negative impact on SOV use.  The analyses also suggested 
that employment density at both trips ends should be used to explain the variation in mode 
choice instead of using the density at one trip end.  Additionally, land use mix best explains why 
individuals choose to walk.  The authors also investigate the property of the functions that relate 
the urban-form variables to mode choice, suggesting that such functions are non-linear in nature.  
Plotting mode choice versus gross employment per acre was created and from the plots the 
authors determined that significant shifts from SOV to transit use and walking occur between an 
employment density of 20 and 75 employees per acre and again when density exceeded 125. 
 
Kockelman supports Pushkarev’s and Zupan’s conclusion in a study on the relative effect of 
population density and income on modal split (Kockelman, 1995).  She shows that density (or 
other factors proxied by density such as land prices, parking fees, transit service frequency, and 
congested roadways), not income, was the influential factor on modal split.  The study analyzed 
three different levels of data covering 108 San Francisco Bay Area (SFBA) census tracts, 41 
SFBA cities, and 35 U.S. metropolitan areas.  Due to data limitations, the author examines work 
trips only.  By analyzing census tract data using single variable regression, the percent of 
workers not driving alone was found to be significantly related to density (correlation 0.891 and 
R2 0.794), but not so to income level (correlation -0.289 and R2 0.084).  Density and income are 
not significantly correlated.  In multiple regression analyses, a destination index serves as a 
coarse proxy for transit level-of-service to and at the workplace and the regional importance of 
that destination for employment.  The index was constructed as the weighted sum of percent of 
workers that commute to different cities.  The multiple regression results again show that an 
index of density and destination is more important than income level in determining mode 
choice.  The elasticity of percent of workers not driving alone is +0.35 with respect to residential 
population density, -0.10 with respect to income, and 0.2 with respect to the destination index.  
Not included in the model are working place parking policies, congestion along traveled routes, 
access to alternative modes, land use mix, trip length and cost, and transit service supply 
(destination index is a crude estimate of transit service availability), and non-work trips, all 
affecting mode choice and overall impact of these factors on travel behavior. 
 
Similar analyses performed at the city level for the San Francisco Bay Area include a dummy 
variable for access to the rail rapid transit system, BART.  The regression models suggest an 
elasticity of +0.35 for density, -0.25 for income, and +0.17 for BART access.  Although BART 
access appears to have a significant impact on single vehicle occupancy, Kockelman concedes 
that the measure at the city level is coarse, pointing out that a study by Robert Cervero (1994) 
suggests that workplace parking policies, destination relative to station locations, and vehicle 
ownership are important factors in determining the mode choice for residents near the BART 
stations. 
 
Kockelman (1997) investigates the link between urban form and travel behaviors, concluding 
that accessibility, land use mix, and land use balance are all statistically significant and 
influential to travel behaviors, including mode choice.  In addition to the accessibility index 
described in the accessibility section previously, other measurements used are briefly introduced 
below: 
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Where Pj is the proportion of land development of the jth type and J is the number of different 
types of land development, which include residential, commercial, public, offices and research 
sites, industrial, and parks for analysis of work trips, and residential, commercial, public, and 
parks for analysis of non-work trips.  To avoid bias against small census tracts that do not have 
adequate area to allow a variety of land use types, a mean entropy is used: 
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where K is the number of actively developed hectares in a census tract, and Pjk the proportion of 
land use type j within a 0.8-km radius of developed area surrounding the kth hectare.  In addition, 
a “Dissimilarity Index” is another measure of land use mix, with a larger value indicating more 
types of land uses in a tract: 
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where K is the number of actively developed hectares in the census tract, and Xik is a dummy 
variable that assumes 1 if the central active hectares’ use type is different from that of a 
neighboring hectare, and 0 otherwise. 
 
Linear regression models relating vehicle kilometers traveled (VKT) per household and different 
sets of predictors showed that the inclusion of the accessibility, entropy, and land use mix 
indicators significantly increase the value of R2 when compared with models that only included 
household size, income per household member, and auto ownership.  In the logit mode choice 
model, the inclusion of accessibility, population density, and employment density (all measured 
at both the origin and destination zones) also increased the psuedo-R2 compared to models that 
only include trip distance, gender, age, race, number of workers, number of drivers, number of 
professional workers, auto ownership, household size, and member income as explanatory 
variables.  Analysis of the elasticities of independent variables with respect to household VKT 
(total and non-work home-based) and mode choice shows that these variables are highly 
sensitive to accessibility (e.g. with an elasticity of -0.35 for non-work home-based VKT and 0.22 
for walk/bike choice).  Land use mix and mean entropy are also influential.  The study concludes 
that accessibility is a far better predictor of VKT than density.  While capable of identifying 
statistical correlation among travel behaviors and variables used in this study, the limitations of 
simple regression or logit models in determining the direction of causation have been recognized 
by the author, who contended that a structural model may be able to better explain the causation.  
 
A study by Sun et al. (1998) takes a similar approach.  Using the 1994 Portland Travel Survey 
data, density (population, employment, dwelling units), land use mix, accessibility, annual 
household income, household size, dwelling type, number of phone lines in a household, 
presence of a car phone, auto ownership, home ownership and year in current residence, number 
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of activities, and proximity to light rail are analyzed to determine their impact on household trip 
rates and VMT.  Transit mode choice was not studied.  The accessibility measure is given as: 
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Accessibility is computed for home-to-job and job-to-home trips and analyzed through ANOVA, 
linear regression, and sensitivity analysis.  The authors proved that dwelling type was 
independent of household income.  The authors utilized histograms to plot density and land use 
mix against income levels; results show that low-income households have a slightly higher 
concentration in high density areas and areas with better land use mix, and there is no 
fundamental difference in household income distribution in different types of neighborhoods.  
Regression analysis showed that density and land use balance make little difference in the 
number of daily trips but has a significant impact on house VMT.  High density and high entropy 
both contribute to a reduction of VMT (by 19 percent and 45 percent, respectively). 
 
In a study of Miami-Dade County in Florida, Messenger and Ewing (1996) establish two sets of 
simultaneous equations by place of residence and by place of work.  The first set of equations 
establish three relationships: (1) transit share by place of residence to zero or one automobile 
households, land use mix/balance, and bus peak frequency; (2) zero or one automobile 
households to household income, logarithm of residential density (residential and employment), 
morning peak bus run time to downtown; and (3) logarithm of residential density to zero or one 
automobile households, logarithm of overall density, a variable rating street network 
resemblance to a grid system, and a dummy variable indicating proximity to the rail rapid transit.  
The second set of equations establish two relationships: (1) transit share to morning peak bus run 
time to downtown and zonal average seven-hour parking cost; and (2) the parking cost to the 
logarithm of overall density, a dummy variable indicating a zone is part of the downtown, and 
proportion of jobs in commercial and service sectors.  The equations are simultaneously 
estimated by a full-information maximum likelihood method.  The first set of equations (based 
on place of residence) has a better explanatory power (R2 values ranging from 0.34 to 0.49) than 
the second set (based on place of work) (R2 values ranging from 0.11 to 0.38).  From the 
estimated equations, it was decided that the density needed to support a 25-minute bus headway 
was 8.4 dwelling units per acre (1.4 higher than that proposed by Pushkarev and Zupan) at the 
transit operator’s minimum productivity and 19.4 dwelling units per acre at the system-wide 
average productivity.  Additionally, different factors affect transit use at different trip ends.  Bus 
mode share at trip origins is primarily a function of low automobile ownership, and secondarily 
of job-housing balance and transit service level, although job-housing balance has a small effect.  
This study finds that street configuration has no apparent effect on transit use, which disagrees 
with results from several other studies (Cervero and Gorham, 1995; Handy, 1992; Hsiao et al., 
1997; Kockelman, 1997).  This study finds that bus mode share at trip destinations is primarily a 
function of parking cost, overall density, and access to downtown; in addition, the trip end transit 
mode share models only explain a small portion of the variation in the data, indicating that other 
factors need to be identified.   
 
In an attempt to determine if land use truly has a causal relationship with travel behavior or 
whether other socioeconomic, demographic, and transportation supply characteristics (also 
associated with land use) are the real determinants of travel behavior, Kitamura et al. (1997) 
conducted a household survey (including a three-day travel diary) in five neighborhoods in the 
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San Francisco Bay Area (SFBA) and investigated the travel behavior variables and a wide array 
of variables that are objectively or subjectively measured.  The authors hold medium zonal 
income at a uniform level to control the effect of income on travel in the five neighborhoods, 
each approximately one square mile in size, while other characteristics such as land use density 
and mix are chosen to represent extreme conditions.  Travel behavior is measured by number of 
trips, number of transit trips, number of non-motorized trips per person per day, and mode share.  
Data about the sites were collected, which included street characteristics (width, sidewalk, bike 
lanes, speed limits and other traffic control devices), public transit service (bus stops, service 
frequencies, etc.), location and type of commercial developments, parks and other public 
facilities, and general neighborhood characteristics (for detail see Kitamura et al. 1994).  Dummy 
variables were used to represent access to rail transit, mixed land use, high density, presence of 
sidewalk, presence of bike lanes, backyard, available parking space, house ownership, sex, 
homemaker, student, professional, low education level, college education, graduate degree, high 
and medium personal income, respectively, apartment, single-family home, and responses to an 
array of questions related to reasons for staying in the area (no reason to move, streets pleasant to 
walk, cycling pleasant, good local transit, enough parking, and congestion problem).  Measured 
variables include distances to nearest bus stop, rail station, grocery store, gas station, and park, 
respectively, and household size, number of persons over age 16, number of vehicles, number of 
vehicles per persons over age 16, household income, age, driver’s license holding.   Results of 
the regression models indicated that the variables had weak power to explain mode choice (R2 
values for all models are less than 0.14).  Nonetheless, these results led the authors to conclude 
that parking availability negatively impacts the total number of person trips, and high density, 
proximity to parks and bus stops, access to rail transit stations, and presence of sidewalks 
encourages non-motorized travel.  Furthermore, attitudes (pro-environment, pro-transit, 
suburbanite, automotive mobility, time pressure, urban villager, TCM, and workaholic) were 
determined to have a more significant impact on travel behavior than socioeconomic and land 
use characteristics. In fact, land use characteristics were found to be the weakest predictors.  This 
is of particular interest because current modal split models do not include them as determinants 
of mode choice.  These variables may also account for the some of the unexplained variability in 
transit mode choice since we know people are not always as rational as assumed in logit models 
in which a trip maker is supposed to make a mode choice by maximizing the utility of the trip, 
which involves comparing the generalized costs for a trip via different means.  On the other 
hand, it is impractical to include such attitudinal information in the models as such information is 
difficult, if not entirely impossible, to forecast. 
 
The many facets of the relationship between urban form and transit were re-examined, explained, 
evaluated, and documented in a TCRP project for the purpose of helping make effective public 
transportation investment (Seskin, 1996).  The TCRP project attempts to determine how urban 
form influences the demand for light rail and commuter rail transit and how transit influences 
land use.  This study finds that urban structure, employment and residential densities, land use 
mix and urban design influence transit use.  However, although land use mix and urban design 
are significant in explaining transit use, individual land use and design are not.  Also, density is 
more powerful than land use mix and urban design in explaining transit use.  On the other hand, 
the influences of transit on urban form were described by using the following four factors: 
property value, intensity of development, urban structure, and timing of development.  First, 
accessibility to rail transit typically results in higher residential and commercial property values 
and rents.  Second, although rail transit impacts transit station areas where transit confers a 
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distinct accessibility advantage on a location, the effects are varied among different networks.  
Third, both CBDs and subregional centers benefit from station-area development.  Finally, major 
rail investments can accelerate development in station areas. 
 
2.5 Neotraditional Neighborhood and Urban Design 
 
Neotraditional neighborhoods are characterized by closely spaced street grids, high density, and 
location, often near street car tracks.  Such neighborhoods are often older, built before the end of 
World War II.  Whether urban design has any impact on transit use is a topic for debate; some 
argue that neotraditional neighborhood design encourages walking and transit use, while others 
disagree.  Many studies have been conducted to determine the effect of urban design variables. 
 
Handy (1992) studied shopping trips in the San Francisco Bay Area based on regional and local 
accessibility indices.  The indices are based on the gravity model and are proportional to local 
attractions (or regional centers) and inversely proportional to an exponential function of travel 
time.  Data from the 1980 Census and a regional travel survey of 7,235 households were 
aggregated at “superdistrict” level (34 in total) and used for analyses.  Handy found that two to 
four more bicycle and walk trips were made by residents in the two districts that more closely 
resemble a neotraditional neighborhood than by those living in areas that are automobile 
oriented.  She did not address the question of whether the non-motorized trips actually replaced 
some of the automobile trips or if the neotraditional neighborhood simply encourages more walk 
and bicycle trips.  Her analytical approach (based on accessibility indices) has several 
weaknesses.  Firstly, the use of superdistricts may mask the variability of accessibility in 
different parts of a zone.  Secondly, local accessibility is easily affected by the choice of zonal 
boundaries, which are somewhat arbitrary.  Finally, trip data do not distinguish convenience 
shopping (happening mostly locally) and comparison shopping (often at regional centers).  
Therefore it is impossible to evaluate how local and regional accessibility affect the travel 
patterns individually.  Furthermore, socioeconomic and other factors that may affect travel 
patterns are not controlled in the study. 
 
Cervero (1994) contends that many comprehensive studies on the relationship between built 
environment and travel behavior do not adequately control income and other extraneous factors.  
In his study of travel characteristics comparison using data from the San Francisco Bay Area and 
Los Angeles, he carefully paired “transit neighborhoods” and “auto neighborhoods” by a set of 
selection criteria (Cervero, 1994).  The “transit neighborhoods” are defined as those that were 
built before 1945 along streetcar lines or a rail station on a grid street network.  In contrast, the 
“auto neighborhoods” built after 1945 are not designed for transit and have no transit services, 
consisting of random street patterns (over 50% of intersections being “T” intersections or cul-de-
sacs).  To match the auto neighborhoods with the transit neighborhoods, criteria controlling 
income, transit services, topography, and size are used.  For an auto neighborhood to match a 
transit neighborhood, there can be no more than ten percent variation of medium household 
income from that of the transit neighborhood; there should be transit services (type and density) 
comparable to the transit neighborhood; it should have similar topographic and natural 
conditions; and it should be located no more than four miles from the transit neighborhood.  
Additionally, an auto neighborhood also has to have a significantly lower percentage of four-way 
intersection cross roads and the net residential density lower than or equal to that of the transit 
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neighborhood. By applying these specific criteria, seven neighborhood pairs in SFBA and six in 
Los Angeles were identified. 
 
A comparison of the SFBA paired neighborhoods revealed that while other demographic 
characteristics (such as mean vehicles per household, percent of white households, and mean age 
of residents) of the neighborhood pairs did not differ significantly, most auto neighborhoods had 
a higher auto ownership, produced many more drive-alone trips, had a lower transit use, and had 
much lower walk trip rates than transit neighborhoods.  On average, transit neighborhoods 
generated about 70 percent more transit trips and 120 pedestrian/bicycle trips.  This may be in 
part attributed to the fact that transit neighborhoods tend to have better transit service supplies 
(measured by daily VMT per acre).  By comparison, the transit neighborhoods in Los Angeles 
did not enjoy the same significant amount of transit use or reduction of single occupancy driving. 
Cervero attributs this phenomenon to the overall strong auto orientation in Los Angeles such that 
the positive effects of transit neighborhoods are limited.  To take his conclusion one step further, 
however, one may argue that the inconclusive relationship between transit neighborhoods and 
transit use in Los Angeles may be a result of inadequate transit services, which is affected by the 
built environment.  In SFBA, transit services were much more concentrated in transit 
neighborhoods than in Los Angeles, perhaps due to the higher percentage of neighborhoods that 
qualified as transit neighborhoods.  Not only did this attracted people who desired to use transit 
to these neighborhoods, but it also allowed the transit providers to provide a good level of 
service in a large area and to increase overall accessibility via transit.  In contrast, the dominance 
of auto-oriented neighborhoods in Los Angeles made it difficult to provide good transit services 
even to transit neighborhoods with the same efficiency and level of accessibility. 
 
In addition to the comparison at the neighborhood level, Cervero ran a regression using data of 
the entire Los Angeles area on the percent of transit trips against variables such as gross 
residential density (households per acre), natural logarithm of household income, neighborhood 
type (auto or transit), and density interaction (product of residential density and neighborhood 
type).  The R2 is 0.55.  According to the model, all variables are significant at a significance level 
of p < 0.001.  In Los Angeles, everything else held constant, transit neighborhoods would 
generate 1.4 percent transit trips per every 1,000 households while those in SFBA would 
generate 5.1 percent transit trips.  In Los Angeles, density had a stronger correlation to transit use 
than neighborhood type.  Increasing density by one dwelling unit per acre would increase transit 
trips by two to four percent.  The density-neighborhood type interaction term had a stronger 
effect in the SFBA than in Los Angeles.  Work trips by transit averaged 8 percent more if density 
was 10 units per acre and 13.5 percent more when density was 30 units per acre.  Cervero 
speculated that congestion might influence mode choice, though he did not control for it.  
 
Cambridge Systematics, Inc. (1994) investigated the interactive effects of land use/urban design 
characteristics and transportation demand management (TDM) strategies on the transportation 
choices made by commuters in the Los Angeles metropolitan area.  They suggested that 
employment site characteristics had an important influence on a person’s willingness to commute 
by modes other than driving alone, and that employers’ TDM strategies should be a function 
having a positive interactive effect in influencing an employee’s choice of commute travel mode.  
Land use factors considered included accessibility to services, particularly the mix and intensity 
of services within walking distance of the workplace, and employment density.  Urban design 
characteristics included architecture, streetscape, and site layout, and other factors contributing to 
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feelings of comfort and safety.  The Principal Components method was applied to reduce a large 
number of land use/urban design variables into five composite variables: the perception of safety, 
the accessibility of services for walking on midday trips, the availability of convenience services, 
the mix of surrounding land uses, and the aesthetics of the area surrounding the work site.  In 
addition, five categories were created for TDM strategies: financial incentives, flexible work 
schedules, assistance programs, award programs, and other strategies.  ANOVA techniques are 
applied to test the interactive impacts of the five composite variables and the five categories of 
TDM strategies on mode choice.  Some of the relevant results from the study include the 
following: 
 

�� When financial incentives are present, the greatest reduction in the drive alone share is 
realized in areas with an aesthetically pleasing urban character. 

�� When individually considered, TDM strategies have a larger influence on reducing the 
drive alone mode share than do land use characteristics. 

�� When jointly considered, there is a positive cumulative impact on increasing average 
vehicle ridership and reducing drive alone mode share when both financial incentives and 
one of the five land use component variables is present. 

�� Employer-provided transportation assistance programs have a small but statistically 
significant impact on reducing the drive alone modal share and increasing the average 
vehicle ridership at sites having a mix of convenience-oriented services. 

 
A study of six Austin, Texas neighborhoods by Clifton and Handy (1998) also support the 
inconclusive effects of various urban form variables on travel behaviors, particularly on reducing 
automobile dependency.  The study explores the motivations for travel as well as the patterns of 
travel.  Travel surveys and focus groups were used to study the travel choices of residents of the 
six case study neighborhoods.  The results suggest that the role urban form plays in travel 
behavior is not entirely straightforward, sometimes influencing travel choices directly, 
sometimes indirectly, sometimes influencing choices in the short term, sometimes in the long 
term, and sometimes not having any measurable influence on choices at all.  In the end, it 
appears that certain land use policies can help to provide alternatives to driving, but that the 
reduction in driving is likely to be small. 
 
2.6 Summary 
 
Based on the literature review, the most common analysis approaches are multiple regression and 
time-series analysis.  Structural models are capable of modeling interrelated variables and are 
appropriate if the calibration of a model is necessary to predict the modal split.  Nevertheless, the 
objective of this research was to determine the relevance of different variables and their relative 
importance in transit use, which should be adequately served with regression methods.  The 
weakness of the multiple regression approach, such as autocorrelation, non-normal distributions 
and invalidity of the IID normal assumption, is discussed.  Although flawed in theory, multiple 
regression analysis is still widely applied since its concept is easy to understand.  Thus, from a 
practitioner’s point of view, this approach may be worth further investigation. 
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The factors that affect transit use can generally be classified into the following categories: 
 
(1) Transit level of service (LOS); 
(2) Accessibility; 
(3) Land use/urban design; and 
(4) Transit users’ socioeconomic/demographic characteristics. 
 
Transit service quality factors may be considered in terms of rider comfort, cleanliness and 
appearance, safety and security, pedestrian environment, amenities, headway, hours of service, 
parking spaces, reliability, service coverage, transfer, cost, etc.  The literature generally supports 
the ability of transit systems with high-quality services to attract more users.  However, some of 
the LOS factors affecting transit use often cannot be easily quantified.  For example, most of the 
studies point out the conceptual importance of the LOS measures of effectiveness (MOEs) 
without further suggesting the appropriate approaches to quantify them.  Some examples of such 
MOEs include passenger comfort in vehicle and in stations, security, and pedestrian 
environment.  Consequently, it is still difficult to formulate LOS variables in models for 
estimating transit share.  As a result, statistics such as PPMS were developed and implemented to 
determine the quality of transit service.  Although tremendous efforts have been devoted to 
exploring the LOS factors that significantly affect transit use, contradictory findings were cited 
by different researchers and practitioners in different study areas (e.g., Ulberg (1982) and Vaziri 
et al. (1990) did not find service hours to be significant in contrast to other researchers) 
indicating that some of the transit LOS MOEs may not be transferable from one urban area to the 
other. 
 
Similar to the LOS MOEs, some accessibility variables were demonstrated to significantly affect 
transit use by the research studies such as Metro (2000), Parsons Brinckerhoff (2000), Sun et al. 
(1998), and others.  Numerous models are available for measuring accessibility, e.g., the 
accessibility index proposed by Richardson and Young (1982) and Kockelman (1997).  Lately, 
with the advancements in GIS techniques and the more readily available data sources, more 
rigorous and detailed analyses (such as considering natural and manmade barriers that prevent 
access from residential areas to public transit stops), have been developed to better quantify 
accessibility.  Nevertheless, the procedures that measure accessibility in a GIS environment are 
not yet simple menu-driven processes, requiring that someone trained in GIS acquire the 
necessary information and manipulate the related data.  In addition, disaggregated accessibility 
variables are still not adopted in the traditional aggregated travel demand forecasting models and 
their effects on demand models’ outcome are not yet verified. 
 
Land use/urban design variables may include population density, employment density, land use 
mix, land use balance, etc.  Although some of the literature considers the land use/urban design 
factor an important component affecting the travel mode selected by road users, its effects are 
not as significant as individual characteristics such as gender, ethnicity, and age (Loutzenheiser, 
1997).  Thus, how to properly define and measure the effects of land use/urban design on transit 
ridership appears to be a relatively new research topic that has attracted the attention of many 
researchers and practitioners.  Different forms of entropy, e.g., those implemented in Frank and 
Pivo (1994) and Kockelman (1997), have been adopted by different studies in different study 
areas.  Further research is needed to focus on land use factors and their links to travel behavior 
because their relationships have not yet been thoroughly investigated. 
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According to our literature review, research on socioeconomic/demographic characteristics of 
transit users (including age, education, ethnicity, gender, household structure, vehicle 
availability, and so on), results in significantly contradictory conclusions.  For example, income 
was found to not significantly affect transit use by Sun et al. (1998), Loutzenheiser (1997), Gray 
and Thompson (1996), Spillar and Rutherford (1990), Holtzclaw (1990), and Nelson and O'Neil 
(1982) while the majority of literature concluded otherwise.  Conflicting findings can also be 
observed for age, gender, and vehicle availability variables.  In addition, a household’s or an 
individual’s socioeconomic/demographic characteristics are usually highly correlated, such as in 
the case of vehicle ownership and income.  Additional precaution, such as applying the Principal 
Components method to reduce the number of variables (Cambridge Systematics, 1994), may be 
required before incorporating correlated factors. 
 
One of the problems with many studies on the links between various factors and transit use is 
that the conclusions are based on claims of statistical significance, while in reality the 
contribution or impact of these factors is insignificant.  For instance, some models presented in 
the literature only achieved a small R2 (i.e., 0.1 or less) while all the model variables are 
statistically significant.  From a modeling perspective, a contributing factor should be selected 
based not only on its statistical significance, but also on its power to explain the variations in 
transit ridership. 
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3. STUDY AREA SELECTION  
 
This chapter presents the methodology by which the study area is selected.  Data have been 
compiled for the statistical analyses to determine the contributing factors to transit ridership.  
The study is limited to a selected area due to time constraints and the significant effort required 
to collect, compile, and verify the quality of the necessary data for the entire southeast Florida 
Region or one or more of its associated counties.  For instance, there were over 10,000 bus stops 
in Miami-Dade County, close to 4,000 of which were geocoded based on a printed list of bus 
stops, making it infeasible to use the entire data set.  The decision was made to select a random 
sample from Miami Dade County for statistical analysis because this county has the largest share 
of transit users and more transit types compared to other counties.  Data from Broward and Palm 
Beach counties were also used to test whether the same factors identified by the models 
developed for Miami-Dade County correlated with transit uses in each of those counties. 
 
The rest of this chapter is organized as follows.  Section 3.1 explains the rationale behind the 
selection of census tracts as the spatial analysis units.  Sections 3.2 and 3.3 illustrate the statistics 
summarized from the household travel characteristics survey and transit onboard (TOB) survey. 
Section 3.4 addresses the elimination of neighborhoods based on existing transit service 
coverage in Miami-Dade County.  Finally, Section 3.5 describes which neighborhoods are 
selected as the study areas and how they were selected. 
 
3.1 Selection of Geographic Analysis Units 
 
Traffic Analysis Zones (TAZ’s) are considered too small to be used as the geographic units of 
analysis because the sample sizes are relatively small (see the discussion on survey data that 
follows).  Instead, Census 2000 tracts are considered to be more appropriate because they are not 
so small that too few samples would be available in each tract or too large to lose too much of 
the variability of important land use characteristics. 
 
Using census tracts as the analysis units has three advantages.  First, census tract data are readily 
available and may be used to supplement existing data.  Second, census data are updated every 
decade with great detail.  This temporal information will allow longitudinal analysis to determine 
the effect of demographic, socioeconomic, and land use changes on transit use.  Third and 
finally, as a commonly used unit of analysis, they allow the approach developed in this project to 
be applied to other urban areas. 
 
Because sample units in different municipality and/or neighborhood boundaries are usually 
associated with different physical characteristics, 30 neighborhoods in Miami-Dade County have 
been randomly selected6.  One hundred (100) census tracts were then selected randomly from 
those in the 30 neighborhoods. As will be seen later, since the census tracts are the actual 
analysis units, the 100 tracts falling within the 30 neighborhoods were selected for analysis. 
 
Neighborhood and census tract boundaries were jointly considered in the process of study area 
selection to reflect different spatial characteristics within the county.  The selection process has 

                                                 
6 The number 30 is commonly chosen as the minimum size of random samples that assure that the samples represent 
statistically the population to be studied. 
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involved careful examination of the transit service availability and survey data, which include the 
household survey and transit onboard (TOB) survey data from the Southeast Florida Regional 
Travel Characteristics Study (SEFRTCS).  The procedure used in selecting the study areas is 
described as follows. 
 

�� First, auto dependent neighborhoods that had limited accessibility to existing transit 
services were identified.  Since transit is not likely to be a feasible mode of choice for the 
people living in or commuting to these auto dependent areas, they were excluded.  Transit 
accessibility for this purpose was determined based on the existing Miami-Dade Transit 
Agency (MDTA) bus route coverage (without jitney services since accurate information 
is not easily available).  A quarter-mile buffer along the transit routes was created, which 
covered the potential transit service areas with walk accessibility to transit services. 
Neighborhoods that have either none or only a small proportion of their areas falling 
within the buffer zone were excluded. 

 
�� Next, 30 neighborhoods were randomly selected from the choice set created in the first 

step.  Random selection ensures that the samples selected for analysis is not biased (e.g., 
based on the tracts with the highest number of samples).  In other words, causes behind 
low transit use are of equal interest as those behind high transit use.  The census tracts 
that were completely within the boundaries of 30 neighborhoods were then selected and 
included in the analysis.  For the census tracts that were located partially inside the 
neighborhood boundaries, researchers’ judgment determined if the tracts were to be 
included or not.  The number of samples from the TOB survey as part of the SFRTC 
study will be used to estimate the transit share within each census tract.  The TOB survey 
data provide detailed information of socio-economic attributes and travel characteristics 
of transit riders.  The locations of sampled transit trips were geocoded for both trip ends.  
Since areas with more sampled transit trips at either the origin or destination ends reflect 
higher transit demand, the number of transit trip samples may be used as an indicator. 

 
3.2 Household Travel Characteristics Survey 
 
The primary purpose of the household travel characteristics survey was to collect data that could 
be utilized in travel demand model development.  This survey collected data that characterize the 
demographic characteristics of households and travel patterns of household members.  A total of 
5,067 households with valid addresses completed the household survey of the SEFRTCS study.  
The detailed survey results categorized by household demographics and travel patterns may be 
found in Technical Report No. 1 of the SEFRTCS study.  The following subsections describe the 
spatial distribution of the sampled households at the municipality and neighborhood levels in 
Miami-Dade County. 
 
3.2.1 Sample Locations at Municipality Level 
 
In Miami-Dade County, there are 31 incorporated municipalities.  In total, 1,687 households 
(HHs) were sampled in Miami-Dade County in the household survey of the SFRTC study.  
Among these, only 88 HHs were recorded with transit trips.  For the tri-county area, only 158 
HHs were recorded with transit trips.  Table 3-1 shows the number of samples recorded with 
transit trips, the total number of samples, and the ratio between these two statistics in each 
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municipality.  The results in Table 3-1 indicate that transit trips are a very small proportion of 
total trips when data are aggregated to the municipality level. 

 
Table 3-1. Dwelling Units (DUs) with Bus Trips as a Percent of Total Samples in  

Miami-Dade Municipalities 
Sampled DUs Sampled DUs Municipality 

Name Total With Bus 
Trips % 

Municipality 
Name Total With Bus 

Trips  % 

Unincorporated 875 35 4.00 Bay Harbor ISL 8 0 0.00
Miami 294 27 9.18 Sunny Isles 6 0 0.00
Hialeah 163 3 1.84 Surfside 6 1 16.67
Miami Beach 69 9 13.04 El Portal 5 0 0.00
North Miami 42 3 7.14 Sweetwater 5 0 0.00
Coral Gables 40 2 5.00 West Miami 4 0 0.00
Homestead 24 0 0.00 Medley 3 0 0.00
Pinecrest 23 0 0.00 N Bay Village 3 0 0.00
Opa Locka 17 0 0.00 Virginia Gdns 2 0 00.0
N Miami Beach 16 3 18.75 Florida City 2 0 0.00
Miami Springs 16 1 6.25 Biscayne Park 2 0 0.00
Aventura 14 1 7.14 Golden Beach 2 0 0.00
Miami Shores 13 1 7.69 Bal Harbour 0 0 0.00
South Miami 13 1 0.08 Islandia 0 0 0.00
Hialeah Gdns 10 0 0.00 Indian Creek 0 0 0.00
Key Biscayne 10 1 10.00  

 
3.2.2 Sample Locations at Neighborhood Level 
 
Miami-Dade County agencies define the boundaries of 163 major neighborhoods.  Neighborhood 
boundaries may or may not coincide with the municipality boundaries (i.e., some neighborhoods 
straddle two or more cities).  Table 3-2 illustrates the number of household survey samples in the 
various neighborhoods of Miami-Dade County.  Only the neighborhoods that have sampled 
households are included in Table 3-2.  As shown in Table 3-2, of the 54 neighborhoods sampled, 
only nine have three or more households that recorded transit trips.  Six out of the nine 
neighborhoods are located within the City of Miami.  Additionally, Little Havana, with seven 
transit trips recorded, has the largest number of samples.  Thus, with such small sample sizes 
within limited number of neighborhoods, the household survey data do not suit the purposes of 
this study. 
 
3.2.3 Summary 
 
The information from the household survey is not adequate to perform statistically significant 
analysis on factors that impact transit usage due to the small transit user response size.  In fact, of 
the total 5,159 households surveyed, only 191 recorded transit trips, of which 113 were in 
Miami-Dade County; only 28 households recorded transit trips in the 100 selected census tracts 
that make up the study area.  Such limited information is inadequate to perform statistical 
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analysis on the demographic, socioeconomic, and other lifestyle characteristics of the transit 
users.  The SEFRTCS household survey data are therefore not useful for this study. 
 

Table 3-2. Dwelling Units (DUs) with Bus Trips as a Percent of Total Samples in Miami-
Dade Neighborhoods 

Sampled DUs Sampled DUs 

Neighborhood Name Total  
With 
Bus 

Trips
% Neighborhood Name Total  

Wit
h 

Bus 
Trip

s 

% 

Kendale Lakes 73 3 4.11 Hialeah – Area 6 14 1 7.14
Carol City 45 2 4.44 North Shore 13 1 7.69
West Flagler 40 5 12.50 Cutler 13 1 7.69
Little Havana 39 7 17.95 Norland 12 1 8.33
Kendall 39 1 2.56 Westwood Lakes 12 1 8.33
Tamiami 38 1 2.63 North Miami East 12 1 8.33
Richmond 36 4 11.11 Saga Bay E. Cutler 12 1 8.33
Westchester 36 1 2.77 Scott Lake 11 1 9.09
Civic Center 29 2 6.90 Granada 10 1 10.00
Hialeah – Area 1 29 1 3.45 West – Miami Shores 10 1 10.00
West Little River 27 5 18.52 Westview 10 1 10.00
Cutler Ridge 25 1 4.00 South Gables 8 1 12.50
North Bayfront 23 3 13.04 West Ave 7 3 42.86
South Miami Heights 22 2 9.09 South – N. Miami Beach 7 2 28.56
Buena Vista 21 2 9.52 West – N. Miami 7 1 14.28
Brickell 21 1 4.76 Miami Industrial 7 1 14.28
Hialeah – Area 5 21 1 4.76 Miami Springs – Area 1 7 1 14.28
Douglas Park 21 1 4.76 Surfside 6 1 16.67
Eastern Shores 21 1 4.76 West South Miami 6 1 16.67
West Kendall 19 2 10.52 Wynwood 6 1 16.67
Kendall North 19 1 5.26 Venetian Islands 5 1 20.00
Flamingo 17 3 17.65 Bunche Park 5 1 20.00
Sunset West 17 1 5.88 Interama 4 1 25.00
Grapeland 17 1 5.88 Central Downtown 4 1 25.00
South Naranja 16 2 12.50 Biscayne Point 4 1 25.00
Liberty City East 15 3 20.00 Key Biscayne – Bay Area 2 1 50.00
Aventura 14 1 7.14 Lake Lucerne 1 1 100.00
 
3.3 Transit Onboard Survey 
 
Transit trips usually compose a small percentage of total person trips and data collected in a 
traditional household travel survey may not provide enough samples to adequately represent the 
trip patterns of transit users.  In order to collect more transit ridership information, a TOB survey 
was completed as part of the SEFRTCS study.  A total of 11,173 transit surveys were collected.  
Samples were collected from the fixed-schedule, fixed-route transit systems in Broward, Miami-
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Dade, and Palm Beach counties.  The routes and trips to survey were randomly selected from 
each system’s weekday service schedule based on route level ridership.  The detailed surveyed 
results categorized by household demographics and travel patterns may be found in Technical 
Report No. 2 of the SEFRTCS study. 
 
The transit trip origins and destinations from the TOB survey have been geocoded.  Table 3-3 
shows the number of geocoded transit trip ends by origin, destination, or their combinations. 
After records without both trip ends geocoded were eliminated, 7,341 transit trips were found to 
have both valid origin and destination locations.  Table 3-4 gives the number of transit trip 
interchanges between and within each of the three counties.  As expected, Miami-Dade County 
had considerably higher transit ridership at both trip ends in comparison with Broward and Palm 
Beach counties.  Among the trips with both ends geocoded, 3,884 trips started and ended within 
Miami-Dade County.  Overall, 4,152 (56.6%) trips had their origins and 4,159 (56.7%) had their 
destinations in Miami-Dade County.  Next, we discuss the spatial distribution of the samples 
from the TOB survey in Miami-Dade County by municipality and neighborhood. 
 

Table 3-3. Geocoded Results for Transit Trips Ends 
Trip End O1 D2 O / D3 O & D4 

Number of Geocoded Trips 8,746 8,731 10,136 7,341 
Percentage of Geocoded Trips 78.3 78.1 90.7 65.7 

1 Origin 
2 Destination 
3 Origin or Destination 
4 Origin and Destination 

 
 

Table 3-4. Number of Transit Trips Interchanged between Tri-County Areas 
Destination County Origin 

County Miami-Dade Broward Palm Beach Total 

Miami-Dade 3884 231 37 4152 
Broward 209 2065 89 2363 

Palm Beach 66 103 657 826 
Total 4159 2399 783 7341 

 
Table 3-5 shows the number of samples from the TOB survey of the SEFRTCS study by their 
geocoded locations in each municipality of Miami-Dade County.  The origins and destinations of 
the sampled transit trips are located in 28 and 30 cities (including unincorporated areas), 
respectively.  While the TOB samples were collected from the transit systems, the spatial 
locations for the origins and destinations of sampled transit trips reflect the transit usage in the 
sampled areas.  For example, areas such as City of Miami, Miami Beach, Hialeah, North Miami, 
and North Miami Beach, where more transit services were provided, resulted in more transit trips 
from the TOB survey than the other cities.  On the other hand, the areas with nearly no transit 
services at all resulted in zero or a small number of samples. 
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Table 3-5. Number of Samples for Transit On-Board in Municipalities of Miami-Dade 
Samples Samples Municipality 

Name TOB_O1 TOB_D2 
Municipality 

Name TOB_O TOB_D 
Miami 1,431 1,280 Biscayne Park 5 1 
Miami Beach 391 384 El Portal 1 5 
Coral Gables 72 61 Golden Beach 0 1 
Hialeah 163 179 Pinecrest 21 11 
Miami Springs 10 4 Indian Creek 0 1 
North Miami 120 138 Medley 2 3 
N Miami Beach 166 176 N Bay Village 2 1 
Opa Locka 9 12 Key Biscayne 6 12 
South Miami 24 17 Sweetwater 44 49 
Homestead 3 5 Virginia Gdns 2 3 
Miami Shores 14 30 Hialeah Gdns 10 4 
Bal Harbour 6 6 Aventura 70 137 
Bay Harbor ISL 1 2 Islandia 0 0 
Surfside 9 34 Unincorporated 1,534 1565 
West Miami 9 5 Sunny Isles 24 26 
Florida City 3 7    

1 Origin location of transit trip 
2 Destination location of transit trip 

 
Table 3-6 lists the number of sampled trips from the TOB survey with their origin trip ends 
located in the neighborhoods of Miami-Dade County.  In total, 4,152 origin trip ends were 
sampled from 138 neighborhoods in Miami-Dade County.  As in Table 3-6, Table 3-7 presents 
the number of sampled transit trips in the neighborhoods of Miami-Dade County for destination 
trip ends.  A total of 4,159 destination trip ends were sampled from 142 neighborhoods.  The 
neighborhoods including Central Downtown, Civic Center, West Flagler, Little Havana, North 
Bayfront, Omni-Boulevard, Liberty City East, Buena Vista, Auburdale, Shenandoah, Brickell, 
Wynwood, and Overtown were within the City of Miami boundary.  Because these areas were 
known to have higher transit travel demand, MDTA provided them with more frequent service.  
Tables 3-6 and 3-7 illustrate that the number of samples from the TOB survey reflects the same 
tendency. 
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Table 3-6. Number of Trips with Origins in Neighborhoods of Miami-Dade 
Name of Neighborhood # Name of Neighborhood # Name of Neighborhood # 

Central Downtown 
Civic Center 
Little Havana 
Liberty City East 
Brownsville & Liberty City W. 
Flamingo 
West Flagler 
Buena Vista 
South - N. Miami Beach 
North Shore 
Omni - Boulevard 
Norland 
Miami Industrial 
Westchester 
Eastern Shores 
Shenandoah 
Auburdale 
Kendall 
Aventura 
Flagler Westside 
West Kendall 
North Bayfront 
West Little River 
North Miami South 
Sweetwater 
Tamiami 
NE Little River 
Oceanpoint 
Ojus 
Brickell 
Hialeah - Area 6 
Wynwood 
Nautilus 
Central Gables 
Opalocka North 
West - N. Miami 
Golden Glades 
North Miami Northeast 
Carol City 
South Point 
Hialeah - Area 5 
South Grove 
Tamiami - Lindgren Ac. 
Doral Area 
Grapeland 
Overtown & Spg Gardens 

209 
189 
146 
138 
136 
128 
116 
108 
104 
98 
98 
95 
91 
87 
85 
82 
79 
75 
70 
69 
67 
66 
65 
57 
53 
52 
48 
47 
46 
45 
43 
41 
39 
38 
36 
35 
34 
33 
30 
30 
29 
28 
28 
26 
26 
26 

Hammocks 
Lake Lucerne - West 
Sunny Isles 
East Kendall 
Hialeah - Area 3 
Richmond 
Hialeah - Area 7 
North Grove 
Westview 
West - Miami Shores 
West South Miami 
Goulds - East 
Hialeah - Area 4 
Ives Estate 
Kendale Lakes 
North Miami Northwest 
West Sweetwater Est 
Miami Lakes 
Country Club Of Miami 
Golden Glades - West 
Normandy Isle 
Scott Lake 
So. Coral Terrace 
University 
Hialeah - Area 2 
Bay Shore 
Blue Lagoon & NW Tamiami Area
Calusa Area Or Lindgren Ac. 
Douglas Park 
Metro-Lindgren Ac. 
No. Coral Terrace 
South - Golden Glades 
Bird Drive Basin 
West Ave 
West Miami 
Hialeah - Area 1 
North Miami East 
Kendall North 
Miami Shores 
Catalina Lakes 
Cutler Ridge 
Surfside 
Interama 
Bunche Park 
Key Biscayne - Co Parks 
Opalocka City 

24 
24 
24 
23 
23 
23 
22 
22 
22 
22 
21 
19 
19 
17 
17 
17 
17 
17 
16 
16 
16 
16 
16 
15 
14 
13 
13 
13 
13 
13 
13 
13 
12 
12 
12 
11 
11 
10 
10 
9 
9 
9 
9 
8 
8 
8 

South Miami Heights 
Cutler 
South Miami City East 
South Miami City West 
Westwood Lakes 
Bal Harbor 
Dadeland 
Granada 
Hialeah Gardens 
Medley 
South Naranja 
West Cutler Area 
Biscayne Park 
Biscayne Point 
Miami Springs - Area 1 
North Gables 
Sunset East 
Sunset West 
Miami Springs - Area 3 
Naranja 
East South Miami 
Florida City 
Homestead 
Key Biscayne - Bay Area 
Key Biscayne - Oceanfront
Miami Lakes West 
Miami Springs - Area 2 
Saga Bay E. Cutler 
Venetian Islands 
East Turnpike Area 
Gables Bayfront 
La Gorce Island 
Leisure City Area 
NE Transitional Area 
No Bay Village 
Olympia Heights 
Perrine 
West Tamiami 
Bay Harbor Island 
El Portal 
Palm Springs North 
South Gables 
West Homestead 
West Quail Roost 
Homestead Base 
Naranja - Priceton -East 

8 
8 
7 
7 
7 
6 
6 
6 
6 
6 
6 
6 
5 
5 
5 
5 
5 
5 
4 
4 
3 
3 
3 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
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Table 3-7. Number of Trips with Destinations in Neighborhoods of Miami-Dade 
Name of Neighborhood # Name of Neighborhood # Name of Neighborhood # 

Central Downtown 
Civic Center 
Aventura 
Flamingo 
Brownsville & Liberty City W 
West Flagler 
Westchester 
Eastern Shores 
Miami Industrial 
Little Havana 
South - N. Miami Beach 
Norland 
North Bayfront 
Omni - Boulevard 
West Little River 
Liberty City East 
North Shore 
Buena Vista 
West Kendall 
Kendall 
North Miami South 
Auburdale 
Carol City 
Opalocka North 
Shenandoah 
Sweetwater 
Hialeah - Area 6 
NE Little River 
Flagler Westside 
Oceanpoint 
Ojus 
South Point 
Tamiami 
Hialeah - Area 5 
Brickell 
Golden Glades 
Surfside 
West - N. Miami 
Central Gables 
Doral Area 
Wynwood 
Overtown & Spg Gardens 
Sunny Isles 
Richmond 
Hialeah - Area 7 
Westview 
South Grove 
Hialeah - Area 4 

244 
183 
137 
135 
127 
113 
112 
112 
108 
107 
104 
102 

97 
94 
91 
86 
84 
82 
76 
75 
72 
63 
58 
57 
56 
54 
54 
53 
52 
52 
46 
44 
43 
42 
36 
34 
34 
32 
32 
30 
29 
28 
26 
26 
26 
25 
23 
22 

Golden Glades - West  
Nautilus 
West - Miami Shores  
Ives Estate 
North Miami East 
Hialeah - Area 3 
Goulds - East 
South Miami Heights 
North Miami Northeast 
South - Golden Glades 
Normandy Isle 
North Grove 
Country Club Of Miami 
West Sweetwater East 
Westwood Lakes 
Miami Lakes 
Scott Lake 
Kendale Lakes 
West Ave 
Douglas Park 
No. Coral Terrace 
Cutler 
Granada 
North Miami Northwest 
Hialeah - Area 2 
Bunche Park 
South Miami City West 
East Kendall 
Opalocka City 
Bird Drive Basin 
Catalina Lakes 
North Gables 
Interama 
Grapeland 
Olympia Heights 
Blue Lagoon & NW  
So. Coral Terrace 
Key Biscayne - Co Parks 
Hammocks 
West South Miami 
West Miami 
Cutler Ridge 
Key Biscayne - Bay Area 
Lake Lucerne - West 
West Cutler Area 
East South Miami 
Florida City 
Bay Shore  

21
21
21
21
21
18
17
17
16
16
16
15
15
15
14
14
14
13
13
13
13
12
12
12
12
12
12
12
11
10
10
10
10
10
10

9
9
9
8
8
7
7
7
7
7
7
7
6

Metro-Lindgren Ac. 
Perrine 
Saga Bay E. Cutler 
Bal Harbor 
South Naranja  
Hialeah - Area 1 
University 
La Gorce 
Biscayne Point 
Sunset West 
Homestead 
El Portal 
Key Biscayne - Oceanfront 
Hialeah Gardens 
Medley 
Tamiami - Lindgren Ac. 
Calusa Area Or Lindgren Ac 
Gables Bayfront 
East Turnpike Area  
South Gables 
Miami Shores 
Miami Springs - Area 3 
Naranja 
Miami Lakes West 
Miami Springs - Area 2 
NE Transitional Area 
Fisher Island 
South Miami City East 
Venetian Islands 
West Tamiami 
Bay Harbor Island 
La Gorce Island 
C-9 Basin Area 
No Bay Village 
Palm Springs North 
West Homestead 
West Quail Roost 
Indian Creek Village 
Port of Miami 
Golden Beach 
North Redlands 
Biscayne Park 
Miami Springs - Area 1 
Horse Country 
Dadeland 
Palm Springs North 
 

6
6
6
6
6
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
3
3
3
3
3
3
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

 
The TOB survey was performed to provide information on transit trip characteristics as well the 
socioeconomic attributes of transit users.  The data collected may be used to formulate, calibrate, 
and validate existing and planned travel demand model structures.  Since the number of 
households sampled with transit trips in the household survey of the SEFRTCS study was not 
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large enough, the results from the TOB survey had to be used in order to analyze the factors that 
impact transit use.  Although the samples have been randomly collected from the transit systems 
based on their ridership and do not reflect the true transit share at either trip end, the number of 
samples at both transit trip ends is highly related to the area’s transit services thus the transit 
demand.  Because the purpose of this study is to search for the factors that have impacts on 
transit use and not to estimate the true transit mode share in an area, the number of TOB samples 
at tract level may be used as the dependent variable for regression analysis. 
 
3.4 Existing Transit Services in Miami-Dade County 
 
Figure 3-1 illustrates the 70 bus routes in Miami-Dade County that were operated by MDTA. 
Jitney transit services were not included.  The 0.25- and 0.50-mile buffer zones covering the 
areas with possible walking distance to the existing transit systems are also shown.  The buffer 
was created along the transit routes in the county, which included the Metrobus, Metrorail, and 
Metromover services. 
 
In general, walking was the main mode for accessing transit.  Based on the TOB survey results, 
3,314 (79.8%) of the 4,152 trips involved walking to transit stops/stations from the origins, while 
3,128 (75.2%) of the 4,159 trips involved walking to destinations after leaving the transit 
systems.  Even for the people with trip origins or destinations outside of the 0.25-mile buffer, 
walking was still the dominant mode for accessing transit.  For example, there were 258 and 274 
trips with origins and destinations, respectively, located outside the 0.25-mile buffer.  Among 
them, 193 (74.8%) and 206 (75.2%) trips respectively accessed transit by walking. 
 
It is commonly assumed that for the majority of the transit users who walk to access transit 
services, the distance from either the trip origin or destination to transit stop or station is within 
0.25 mile.  According to the TOB survey results, 3,894 (93.8%) of the 4,152 trips had their 
origins located in the 0.25-mile buffer zone of the existing bus routes.  Additionally, 3,885 
(93.4%) of the 4,159 trips had their destinations located in the 0.25-mile buffer zone.  By 
extending the buffer to 0.50-mile, more than 98% of the samples had trip ends located within the 
buffer area. 
 
Transit, therefore, is not likely to be a competitive mode for areas outside the 0.25-mile buffer 
around transit routes.  Overlaying the buffer layer and city and neighborhood boundary layers 
allows us to calculate the percentage of areas overlapped with the transit buffer zone.  Table 3-8 
shows the results of the overlay.  Areas such as the City of Miami and the City of South Miami 
almost completely fall within the 0.25-mile transit buffer.  For those municipalities that are not 
well covered, transit services are only available to some neighborhoods within each city.  Figure 
3-2 illustrates the neighborhood boundaries and the 0.25-mile transit buffer.  The areas with 25% 
or more areas covered by the 0.25-mile transit buffer are highlighted.  A total of 128 
neighborhoods are included in the study area selection. 
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Figure 3-1. 0.25- and 0.5-Mile Buffer Zones along Miami-Dade Bus Routes 
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Table 3-8. Percentages of Areas Overlapped by Transit Route Buffers 
Municipality Name 0.25-Mile 0.50-Mile Municipality Name 0.25-Mile 0.50-Mile 
Miami 91.4 96.6 Biscayne Park 43.9 92.0 
Miami Beach 89.0 98.4 El Portal 95.6 100.0 
Coral Gables 61.4 79.5 Golden Beach 99.9 100.0 
Hialeah 76.8 91.7 Pinecrest 52.9 86.3 
Miami Springs 66.9 92.7 Indian Creek 3.6 47.5 
North Miami 75.7 95.2 Medley 13.5 29.5 
N Miami Beach 88.0 99.8 N Bay Village 79.4 100.0 
Opa Locka 72.1 92.7 Key Biscayne 81.3 100.0 
South Miami 94.4 100.0 Sweetwater 85.7 100.0 
Homestead 23.2 35.9 Virginia Gdns 100.0 100.0 
Miami Shores 89.4 100.0 Hialeah Gdns 25.5 44.7 
Bal Harbour 92.5 99.3 Aventura 74.0 98.0 
Bay Harbor ISL 73.4 99.4 Islandia 0.0 0.0 
Surfside 93.5 98.9 Unincorporated 7.67 10.9 
West Miami 99.4 100.0 Sunny Isles 95.8 99.9 
Florida City 61.1 94.8    
 

Figure 3-2. Neighborhoods Included in the Choice Set for Study Area Selection 
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3.5 Study Area Selection 
 
The 128 neighborhoods obtained in Section 3.4 were first sorted by their neighborhood ID 
number in ascending order.  Each neighborhood was then sequentially assigned a number 
ranging from 1 to 128, and 30 areas were randomly selected.  Table 3-9 shows the 
neighborhoods that were selected and the percentage of their areas overlapping the 0.25-mile 
transit buffer.  The percentages varied significantly, from a low of 36.2% to a high of 100%.  The 
geographic locations of the selected neighborhoods are shown in Figure 3-3.  Thirteen 
municipalities are represented by the selected neighborhoods, which include the City of Miami, 
Aventura, Sunny Isles Beach, North Miami Beach, Miami Shores, Opaloca, Hialeah, Miami 
Springs, Coral Gables, Miami Beach, Biscayne Park, Florida City, and Bay Harbor Island.  The 
chosen areas depict a wide range of commuting tendencies and household characteristics, which 
reflect those in other parts of the county.  The neighborhoods selected are expected to allow as 
much spatial and socioeconomic variation as possible to be considered in the analysis. 
 

Table 3-9. Neighborhoods Selected for Study Areas 
Neighborhood Cover1 Neighborhood Cover 

Central Gables 100.0% North Miami Northwest 81.5% 
West Ave 100.0% Sunny Isles 76.9% 
Civic Center 99.8% Kendale Lakes 73.8% 
Buena Vista 99.6% Bay Harbor Island 68.5% 
La Gorce 99.3% Aventura 67.4% 
Westview 99.1% Ives Estate 65.4% 
Douglas Park 96.3% Westchester 64.8% 
West Flagler 96.3% Opalocka North 55.0% 
South-Golden Glades 92.5% Florida City 54.3% 
Hialeah-Area 7 90.2% North Miami East 51.6% 
West-Miami Shores 89.5% Perrine 50.0% 
North Miami South 88.4% Biscayne Park 42.8% 
Carol City 87.2% Doral Area 40.9% 
Hialeah-Area 3 85.4% Calusa Area or Lindgren Ac. 37.6% 
Opalocka City 84.0% Miami Springs-Area 1 36.2% 

1 Area covered by the 0.25-mile buffer. 
 
Next, Census 2000 tract boundaries were obtained for the tracts that are inside the selected 
neighborhoods.  These 100 tracts are used as the unit of analysis to perform detailed study on 
how variables such as urban form, household and trip characteristics, and transit service quality 
and quantity affect mode choice.  A list of the tract numbers will be available when new census 
tract information is obtained. 
 
The following steps summarize the procedure for selecting neighborhoods that make up the 
study area as stated above in detail: 
 
(1) A 0.25-mile buffer was created around bus routes based on the fact that most transit trips 

surveyed accessed transit by walking.  This buffer area is assumed to be the “service 
area” accessible by walk mode. 
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(2) Transit “service area” boundaries were overlaid on neighborhood boundaries to calculate 
the area of each neighborhood that fall within the service area. 

(3) Neighborhoods with less than 25 percent of their areas within the “service area” were 
eliminated, which resulted in 128 remaining neighborhoods. 

(4) The 128 neighborhoods were sorted by identification numbers in ascending order, and 30 
were randomly selected. 

(5) 100 Census tracts falling within the selected neighborhoods were selected. 
 
 

Figure 3-3. Neighborhoods Selected for Study Areas 
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4. DATA COLLECTION AND PROCESSING 
 
4.1 Introduction 
 
Multiple regression analysis has been chosen as the methodology for determining the factors 
affecting transit usage.  Data from a transit-on-board (TOB) survey conducted in the southeast 
Florida area, data on transit level of service, accessibility, land use, and socioeconomic 
characteristics of transit users at aggregate levels were used to develop the model.  More than 
170 variables were compiled using GIS. 

 
As discussed in Section 3.3, because the transit trips sampled in the SEFRTCS household survey 
were too few to provide adequate information on mode shares, data from the TOB survey were 
therefore used for the analysis.  Since the number of samples at both transit trip ends were highly 
related to the area’s transit services (in other words, usage), the dependent variable was defined 
as the ratio between the number of trip ends (either production or attraction or both) in the transit 
buffer zone in a census tract and the tract population. 
 
For some of the variables, data of varying degrees of detail are available.  For instance, land use 
data in Miami-Dade County are available at three levels of detail: single-family and multi-family 
dwelling units by TAZ, land use represented as polygons aggregated from property parcels, and 
individual property parcels, which offer the most detailed information about land use and the 
spatial distribution of different land uses.  As a result, different data sets were compiled for the 
three kinds of land use data, which were used to develop different regression models. 
 
While most of the analyses were performed using data compiled for the buffer areas in census 
tracts, tract level data were also compiled.  For tract level analysis, the dependent variable was 
the ratio of the number of trip ends (either production or attraction or both) in a census tract to 
the tract population.  To compare results from Miami-Dade County with those from Broward and 
Palm Beach counties, available data from the latter two counties were also compiled. 

 
The independent variables may be classified generally into the following categories: 
 

�� Transit level of service (LOS); 
�� Land use;  
�� Accessibility; and 
�� Transit users’ socioeconomic/demographic characteristics. 

 
In the following sections, the collection and processing of data for independent variables are 
described.  Most of the original data in GIS format or database format have been obtained from 
Miami-Dade County Information Technology Division (ITD). 
 
4.2 Transit Level of Service 
 
Transit LOS is an important factor in determining transit use.  However, transit LOS is also 
difficult to measure because an array of factors ranging from ease of access/egress, transfer and 
wait time, to ride comfort and security may affect whether a traveler will use transit.  Transit 
service quality varies from one urban area to another, from mode to mode, and even from route 
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to route.  Based on the results of a survey on transit users’ satisfaction with the largest transit 
systems in six urban areas in Florida, hours of service, routes, and headways were identified by 
the transit users as the biggest concerns among the 22 factors included in the survey (Cleland et 
al. 1997).  Additionally, bus ride comfort, printed schedules, safety, and vehicle cleanliness were 
identified as potential factors.  For this project, we included headway, number of daily bus runs, 
and access to Metrorail stations as independent variables as they are easy to quantify and data are 
easily available. 

 
The following were used to compile the data for transit LOS variables: 
 
o Metrorail stations.  This information was obtained from ITD in GIS format.  Stations were 

represented as points. 
 
o Bus routes.  A 2000 bus route GIS theme was created based on the Miami-Dade County 2000 

bus route maps. 
 
o Bus stops.  At the time of this report, the bus stop information from the ITD had not been 

updated since 1993.  The Miami-Dade Transit Agency (MDTA) staff at the Division of 
Service Planning and Scheduling confirmed that a plan was being considered to re-inventory 
the bus stops using the Global Positioning System (GPS) technology.  However, no RFP had 
been issued, and no completion date was estimated.  Upon request, MDTA provided a 
printout of a list of the bust stops in the county (2000).  Figure 4-1 shows the kinds of bus 
stop information available.  Based on the address information, a bus stop GIS theme was 
created.  Approximately 4,000 bus stops were geocoded, which were located in either the 
study area or the 1/4-mile buffer surrounding the study area. 

 

 
Figure 4-1. Sample of the Bus Stop Information Obtained from MDTA  

 
o Bus schedules.  To derive indicators of bus LOS, bus schedule information for each route 

was obtained from the MDTA published schedule and a database was constructed.  In 
addition to headway information, the database included number of bus runs on each route 
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(see Figure 4-2).  Headway information was coded for eight weekday time periods: 5 to 6 
am, 6 to 9 am (defined as AM peak hours), 9 to 11 am, 11 am to 1 pm, 1 to 3 pm, 3 to 6 pm 
(defined as PM peak hours), 6 to 12 pm, and 12 to 5 am. 

 

 
Figure 4-2. Example of the Headway Database (Partial) 

 
From the headway database as well as the bus route GIS theme, data for the variables listed in 
Table 4-1 were compiled for each census tract.  The methods used to compile the data are 
described below. 
 

Table 4-1. Transit LOS Variables 
Variable Name Description 

MetroRailRatio The ratio of the area of 1/4-mile buffer surrounding the Metrorail stations 
to that of the bus buffers in a tract 

ServiceArea% Percentage of tract area served by transit based on 1/4-mile buffers 
around bus stops 

Peakhdway Composite average peak hour headway for a tract 
WPeakhdway Composite peak hour headway for a tract weighted by service area  
Avghdway Composite average daily headway in a tract 
WAvghdway Composite daily headway for a tract weighted by service area 
Dailybus Unweighted average number of bus runs per stop in a tract 
WDailybus Average number of bus runs per stop in a tract weighted by service area 

 
Metrorail Service Area Ratio (MetroRailRatio) 
 
The Metrorail Service Area Ratio is the ratio of the area within the 1/4-mile buffer surrounding 
the Metrorail stations to that of the bus buffers in the tract.  It is an indicator of high-level transit 
services.  The higher this ratio, the larger the proportion of Metrorail service to the tract, thus the 
better the transit service level in a tract.  This variable was calculated by dividing the area of the 
1/4-mile buffer of the Metrorail stations by the buffer area of the transit stations or bus stops in a 
tract. 
 
Percent of Service Area (ServiceArea%) 
 
Percent of Service Area is the percentage of tract area served by transit.  It was calculated by 
dividing the area in a tract that was covered by the 1/4-mile buffers by the total area of a tract. 
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Peak Headways (Peakhdway, WPeakhdway) 
 
The headway measures are indicators of transit LOS in an entire tract area.  Since a tract might 
have multiple bus stops, at which multiple bus routes operated, these measures were computed in 
two steps.  First, a composite headway CHj for bus stop j was calculated, which combined the 
headways of different routes: 
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          [1] 

 
where  hij =  peak hour headway for the ith bus route operated at bus stop j.  Peak hour was 

defined as morning peak between 6 am and 9 am; and 
 Nj =  the number of routes operated at bus stop j.  
 
To derive the headway measurements for the entire tract area, the stop composite peak hour 
headways were combined again to arrive at the weighted composite peak hour headway 
(WPeakhdway) and unweighted composite peak hour headway (Peakhdway) as follows: 
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where  CHjk  = composite headway for bus stop j in tract k; 
 SAjk = area of the ¼-mile buffer around bus stop j in tract k; 
 SAk  = area of non-overlapping buffer zones in tract k; and 
 Nk  = number of bus tops in tract k. 
 
Average Daily Headways (Avghdway, WAvghdway) 
 
Avghdway is a measure of the average headway during a weekday in a tract.  The formula used 
to calculate this measure is similar to [1] and [3], except that in place of peak hour headway hij, 
the daily average headway is used.  Daily average headway was derived by dividing the length of 
the service period of a route by the total number of bus runs on that route.  Therefore, if a route 
operates 30 bus ran on a weekday and the service period was 15 hours, the daily average 
headway would be 30 minutes. 
 
Similarly, WAvghdway is a measure that combines the daily average headway at individual bus 
stops for an entire tract.  The difference between this measure and Avghdway was that the bus 
stop daily headways were weighted by the corresponding service areas of the stops.  Formulae 
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[1] and [2] were used to calculate the value of the average headway variables, in which hij was 
replaced by the daily average headway at bus stop j for route i. 
 
Average Bus Runs Per Stop (Dailybus, WDailybus) 
 
For a bus stop where multiple routes operated, the numbers of bus runs of all routes were added 
together to arrive at a daily total bus runs for the bus stop.  At the tract level, the daily bus runs at 
different bus stops were simply averaged to obtain the unweighted average daily bus runs 
(Dailybus), and the weighted average of the stop daily bus runs became the weighted average 
daily bus runs (WDailybus) as follows: 

WDailybus
stopdaily runs i SA

Total Service Area
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�
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where stop daily runs(i) = total buses stopping at stop i; 

SAi  = service area of stop i; and  
Ns = number of stops in a tract. 

 
The above measurements are transit LOS measures at the tract level.  They consider multiple bus 
routes at a bus stop, and the service area of each bus stop.  A larger service area will improve the 
LOS measures at the tract level. 
 
4.3 Land Use 
 
Land use variables may include population density, employment density, land use mix, land use 
balance, and so on.  Table 4-2 shows the land use variables developed.  The numbers (1, 2, 3, 
and 4) that follow the variable names indicate the different levels of aggregation and methods for 
calculating the values.  Generally the four methods are different in terms of (1) whether a 
variable is compiled for the buffer area in a tract or an entire tract and (2) whether population and 
employment distributions are based on property information, land use, or assumed to be evenly 
distributed across a tract: 
 

�� Level 1 – data were compiled for transit stop buffer areas in a tract, and population and 
employment were assumed to be evenly distributed in the same land uses.  

 
�� Level 2 – data were compiled for transit stop buffer areas in a tract, and population was 

distributed based on property information while employment was assumed to 
be evenly distributed in the same land uses. 

 
�� Level 3 – data were compiled for transit stop buffer areas in a tract, and both population 

and employment were assumed to be evenly distributed in the TAZs in the 
tract. 

 
�� Level 4 – data were compiled for an entire TAZ instead of just for the buffer area in the 

tract with the assumption that population and employment were evenly 
distributed in the TAZs in the tract. 



 60 
 

 

The methods for calculating the values of each variable at the above levels of aggregation are 
referred to as the GIS Land Use Method (Level 1), Property Method (Level 2), Buffer Method 
(Level 3), and Tract Method (Level 4).  These methods and variables given in Table 4-2 are 
described below. 
 

Table 4-2. Land Use Variables 

Variable Name Area Description 
JOBS_HH1, 2, 3 Buffer Jobs-housing balance in buffer area of a census tract 
JOBS_HH4 Tract Jobs-housing balance in a census tract 
JOBS_HHm1, 2, 3 Buffer Modified jobs-housing balance in buffer area of a census tract 
JOBS_HHm4 Tract Modified jobs-housing balance in a census tract 
AvgEntropy 1-3 Buffer Land use mix in buffer area of a census tract 
AvgEntropy 4 Tract Land use mix in census tract 
AvgParcelSFSize1-3 Buffer Average SF parcel size in buffer area of a tract 
AvgParcelSFSize4 Tract Average SF parcel size in a tract 
AvgParcelMFSize1-3 Buffer Average MF parcel size in buffer area of a tract 
AvgParcelMFSize4 Tract Average MF parcel size in a tract 

AvgParcelSize1-3 Buffer Average parcel size of single- and multi-family properties in buffer area 
of a tract 

AvgParcelSize4 Tract Average parcel size of single- and multi-family properties in a tract 
SFDUDensity1-2, 3 Buffer Single-family dwelling unit density in buffer area of a tract 
SFDUDensity4 Tract Single-family dwelling unit density in a tract 
MFDUDensity1-2, 3 Buffer Multi-family dwelling unit density in buffer area of a tract 
MFDUDensity4 Tract Multi-family dwelling unit density in a tract 
TotalDUDenity1-2, 3 Buffer Total dwelling unit (SF plus MF) density in buffer area of a tract 
TotalDUDenity4 Tract Total dwelling unit (SF plus MF) density in a tract 
SFPopDensity1, 2, 3 Buffer Single-family population density in buffer area of a tract 
SFPopDensity4 Tract Single-family population density in a tract 
MFPopDensity1, 2, 3 Buffer Multi-family population density in buffer area of a tract 
MFPopDensity4 Tract Multi-family population density in a tract 
TotalPopDensity1, 2, 3 Buffer Total population density in buffer area of a tract 
TotalPopDensity4 Tract Total population density in a tract 
ComEmpDensity1-2, 3 Buffer Commercial employment density in buffer area of a tract 
ComEmpDensity4 Tract Commercial employment density in a tract 
ServEmpDensity1-2, 3 Buffer Service employment density in buffer area of a tract 
ServEmpDensity4 Tract Service employment density in a tract 
IndEmpDensity1-2, 3 Buffer Industrial employment density in buffer area of a tract 
IndEmpDensity4 Tract Industrial employment density in a tract 
TotalEmpDensity1-2, 3 Buffer Total employment density in buffer area of a tract 
TotalEmpDensity4 Tract Total employment density in a tract 
TotalDensity1, 2, 3 Buffer Total employment plus population density in buffer area of a tract 
TotalDensity4 Tract Total employment plus population density in a tract 
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Jobs-Housing Balance (JOBS_HH1, 2, 3, 4 and JOBS_HHm1, 2, 3, 4) 
 
Ewing et al. (1995) developed the following indicator for jobs-housing balance: 
 

 JOBS - HHi  =  
E P
E P

i i

i i

�

�

         [4] 

 
where  JOBS-HHi = jobs-housing balance index for zone i;  
 Ei  = employment size in zone i; and  
 Pi  = population size in zone i.   
 
The value of this variable lies between 0 and 1, with 0 indicating a match between employment 
and population in a zone, while 1 indicating a pure residential area (Ei = 0) or a nonresidential 
area (Pi = 0). 
 
To calculate JOBS_HH1, which is a land use mix measure for the buffer area in a tract, 
population and employment in the buffer area are needed.  For this purpose, the land use GIS 
data were used.  It was assumed that population and employment were uniformly distributed in 
the corresponding land uses in a tract (e.g., single-family population evenly distributed in single-
family land use areas, and commercial employment evenly distributed in commercial land use 
areas).  The buffer polygons in a tract were then overlaid with the land use polygons (the 1998 
land use theme).  The total employment and population inside the buffer areas were proportioned 
based on the percentages of the corresponding land use areas that fell within the buffer area. The 
JOBS_HH1 was then calculated using the employment and population in the buffer area in a 
census tract using the above formula.  We will refer to this method of estimating population or 
employment in buffer areas as the GIS Land Use Method (Level 1). 
 
The population data used for computing JOBS_HH2 were obtained using Property Method, 
which involved the use of population estimated for the buffer area based on property 
information.  The employment data were calculated using the GIS Land Use Method (Level 1). 
 
The third method (Level 3: Buffer Method) was used to calculate JOBS_HH3, also a measure of 
land use mix in the buffer area in a tract, does not use the land use data.  Beginning with TAZs in 
a census tract, the employment and population of each TAZ were distributed to the buffer areas 
within the TAZ based on the ratio of buffer area to the total TAZ area.  Uniform density 
throughout a TAZ was assumed.  Once employment and population for the buffer area in each 
TAZ were obtained, they were summed up over all TAZs in the tract, and JOBS_HH3 was 
calculated using the same formula [4]. 
 
The value of JOBS_HH4, a land use mix measure for an entire tract, was computed using a 
fourth method (Tract Method), which involved the use of employment and population of the tract 
in Formula [4] as opposed to the first three methods. 
 
Noting that the labor population is usually smaller than the total population, Formula [4] may 
overestimate the need for employment thus the jobs-housing balance index.  To account for this 
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fact, the following formula, which is a modified version of Formula [4], was used to derive 
another set of jobs-housing balance indices: 
 

JOBS - HHi
m =  

E DU
E DU

i i

i i

� �

� �

15
15
.
.

 

 
where  JOBS-HHi

m  =  modified jobs-housing balance indicator; and  
DUi   = number of dwelling units in a tract i. 

 
Using the above formula, JOBS_HHm1, 2, 3, 4 were calculated for the four methods (Land Use, 
Property, Buffer, and Tract) described above. 
 
Land Use Mix (AvgEntropy 1-3, 4) 
 
Entropy is a measure of land use mix and was computed in this study using a method similar to 
that described in (Kockelman 1997).  This method involved overlaying grid cells of 528 feet by 
528 feet (see Figure 4-3) over the land use.  The mean entropy value for a single cell was 
determined with the following formula: 
 

 Cell Entropy
p p

Ln J
j j

j

J

� �

�

�
ln( )

( )1
       [5] 

 
where  Pj  =  proportion of land development of the jth type; and 
  J = number of different types of land development, which include residential, 

commercial, public, offices and research sites, industrial, and parks (J = 6). 
 
The value of entropy ranges between 0 and 1, with 0 indicating single land use and 1 indicating 
the highest possible mix. 
 

5 x 528 feet
 

 
Figure 4-3. Cells Used for Calculation of Mean Entropy 
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To consider the effects of land use mix in near-by cells, cell mean entropy was used instead to 
measure the land use mix in a cell.  The entropy of the 24 surrounding cells was combined with 
that of the center cell as follows: 
 

 Cell mean entropy

P P
J

K

jk jk

j

k
� �

�

�
�

ln( )
ln( )

      [6] 

 
where  Pjk  = proportion of land development of the jth type in cell k; and  
 K  = number of cells used in the calculation.  Here K was 25. 
 
For any given zone, the zonal mean entropy was calculated as: 
 

 Zonal mean entropy
cell entropy of zone i

N
i

N

�

�

� ( )
1  

 
where N  is the number of cells in the zone.  AvgEntropy1-3 was calculated for the buffer area in 
a tract, while AvgEntropy4 was derived for the entire tract. 
 
Average Parcel Size (AvgParcelSFSize1-3, AvgParcelSFSize4, AvgParcelMFSize1-3, 
AvgParcelMFSize4, AvgParcelSize1-3, AvgParcelSize4, AvgParcelComSize1-3, 
AvgParcelComSize4, AvgParcelIndSize1-3, AvgParcelIndSize4, AvgParcelSerSize1-3, 
AvgParcelSerSize4, AvgParcelEmpSize1-3, and AvgParcelEmpSize4) 
 
Average parcel size is an indicator of land use development intensity.  In urban areas where 
high-density development has occurred, the parcel sizes tend to be small.  Parcel sizes were 
computed for single-family, multi-family, and all dwelling units using the property GIS data.  
For this purpose, the 1999 Miami-Dade County Property Tax Appraiser’s database was used 
because it contained information of the parcel size of each property.  The parcel sizes of the 
single-family, multi-family, and all residential properties were averaged, respectively, to derive 
the values for AvgParcelSFSize1-3 and AvgParcelMFSize1-3.  AvgParcelSize1-3 was calculated 
for the buffer areas in a tract, while AvgParcelSFSize4, AvgParcelMFSize4, and AvgParcelSize4 
were for a census tract.   Variables AvgParcelComSize1-3, AvgParcelComSize4, 
AvgParcelIndSize1-3, AvgParcelIndSize4, AvgParcelSerSize1-3, AvgParcelSerSize4, 
AvgParcelEmpSize1-3, and AvgParcelEmpSize4 were similarly computed for parcel size of 
properties that were of commercial, industrial, and service types and for all nonresidential 
properties. 
 
Densities (SFDUDensity1-2, 3, 4, MFDUDensity1-2, 3, 4,  TotalDuDensity1-2, 3, 4, 
SFPopDensity1, 2, 3, 4, MFPopDensity1, 2, 3, 4, TotalPopDensity1, 2, 3, 4, ComEmpDensity1-
2, 3, 4, SerEmpDensity1-2, 3, 4, IndEmpDensity1-2, 3, 4, TotalEmpDensity1-2, 3, 4, 
TotalDensity1, 2, 3, 4) 
 
The density variables were calculated for single-family dwelling units, multi-family dwelling 
units, total dwelling units, single-family population, multi-family population, total population, 
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commercial employment, service employment, industrial employment, total employment, and 
total employment plus population.  Four methods were used to compute the densities of these 
statistics that measured population, dwelling units, and employment, which were available at the 
TAZ level.  These methods were the Land Use Method, the Property Method, the Buffer 
Method, and the Tract Method.  Variables with names followed by number “1” were computed 
using the Land Use Method. Variables with the names followed by a ”2” were computed using 
the Property Method. Variables with the names followed by a ”3” were computed using the 
Buffer Method. Variables with the names followed by a ”4” were computed using the Tract 
Method. 
 
4.4 Accessibility 
 
Similar to the LOS measures of effectiveness (MOEs), accessibility variables have been shown 
to significantly affect transit use by some studies (Metro 2000, Parsons Brinckerhoff 2000, Sun 
et al. 1998).  Numerous models are available for measuring accessibility, such as the 
accessibility indices proposed by Richardson and Young (1982) and Kockelman (1997). 
 
Accessibility variables are measures of pedestrian accessibility as well as combinations of 
availability of opportunities and mobility that permits those opportunities to be reached.  The 
pedestrian accessibility is a measure of walking distance to transit stops, while the accessibility 
measures that combine opportunities and mobility attempt to reflect how well the transit and 
highway systems serve residential and employment needs.  These two kinds of measures are 
described below in detail. 
 
Walk Accessibility (AvewalkSFdis, AvewalkMFdis, Avewalkdis, AvewalkComdis, 
AvewalkINDdis, AvewalkSERdis and AvewalkEMPdis) 
 
This group of variables includes the average walking distances from single-family, multi-family, 
all dwelling units, and commercial, industrial, service and all nonresidential properties, 
respectively, in the buffer areas of a tract to the nearest bus stops following the street network.  
The locations of the properties were available from the GIS property data.  To arrive at the 
average walking distance, the distance from each of the appropriate residential or nonresidential 
property was calculated using ArcView Network Analyst.  The average distance was then 
calculated for the entire tract. 
 
Regional Accessibility (Accessh1sc, Accessh1em, Accessh1pop, Accessh2sc, Accessh2em, 
Accessh2pop, AccessTWSC1, 2, 3, 4, AccessTWEm1, 2, 3, 4, AccessTWPop1-2, 3, 4 AccessBSC1, 
2, 3, 4, AccesstBEm1, 2, 3, 4, AccessBPop1-2, 3, 4, Wth1SC1, 2, 3, 4, Wth2SC1, 2, 3, 4, 
Wth1Em1, 2, 3, 4, Wth2Em1, 2, 3, 4, Wth1Pop1-2, 3, 4, Wth2Pop1-2, 3, 4, Bth1SC1, 2, 3, 4, 
Bth2SC1, 2, 3, 4, Bth1Em1, 2, 3, 4, Bth2Em1, 2, 3, 4, Bth1Pop1-2, 3, 4 and Bth2Pop1-2, 3, 4) 
 
Accessibility is measured for highway and transit separately.  For highway, two zone-to-zone 
travel skims are obtained using the 1999 Miami-Dade highway network: free-flow skim 
(FFSkim) and free-flow skim plus the time equivalent for toll (FFSkimT).  The skims represent 
the zonal shortest travel times under uncongested conditions.  The general form of regional 
accessibility by highway travel is given below: 
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where  highway accessibility(i) = regional accessibility index for TAZ i; 

Oj  = a measure of population or employment in TAZ i; 
t(i, j) = travel time determined by one of the skims; and 
N  = number of TAZs.   

 
This accessibility measure falls within 0 and 1, with 0 indicating no accessibility, and 1 the best 
accessibility. 
 
To calculate the values of the transit accessibility variables, two transit skims were also obtained, 
i.e., AM peak with walk access (TSkimW) and AM peak with the best access (TSkimB). The 
difference between these two transit skims was the mode to access transit services, i.e., by walk 
mode or by other modes, most likely autos, with the shortest impedance. Similar to highway 
accessibility, the general form of regional accessibility by transit is given below: 
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The difference between formulae [7] and [8] is that the coefficients in the travel impedance term 
assume an exponential form.  The coefficients were calculated using a method developed by 
Levinson and Kumar (1995). 
 
The accessibility indices given by [7] and [8] were for TAZs.  To arrive at indices for census 
tracts, the TAZ accessibility indices were combined as follows: 
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where  AI(j)  = accessibility index for tract j;  
 Oi  = a measure of population or employment of TAZ i;  
 accessibility (i) = highway or transit accessibility measure calculated by formula [7] or 

[8]; and 
 Nt is the number of TAZs in a tract j. 
 
Table 4-3 describes the tract level highway accessibility variables developed using different 
types of opportunities and highway skims.  Table 4-4 lists the transit accessibility variables 
developed for different areas, using different types of opportunities and transit skims.  
Additionally, the variables were distinguished by the area for which they were developed and the 
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land use data utilized in the calculations.  For instance, AccessTWSC1 represented accessibility 
based on transit walk access mode and using service and commercial employment data obtained 
by the Land Use Method.  The number that immediately follows a variable name indicates which 
method was use to compute the opportunities: 1 for the Land Use Method, 2 for the Buffer 
Method, 3 for the Buffer Method, and 4 for the Tract Method. 
 

Table 4-3. Tract Level Highway Accessibility Variables 

Variable Type of Opportunities (Oj) Skim Used 
AccessH1SC Service+commercial employment FFSkim 
AccessH1Em Total employment FFSkim 
AccessHlPop Total population FFSkim 
AccessH2SC Service+commercial employment FFSkimT 
AccessH2Em Total employment FFSkimT 
AccessH2Pop Total population FFSkimT 

 
While the variables in Tables 4-3 and 4-4 measure the accessibility by highway travel and transit, 
respectively, these two sets of measures are independent and disjoint.  However, it is possible 
that the difference between the transit and highway accessibilities will influence the mode choice 
decision.  To evaluate the effect of the difference between transit and highway accessibilities, a 
third regional accessibility measure was developed using the following formula: 
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where  tt(i,j)  = transit travel time between zone i and zone j; and 

th(i, j)  = highway travel time between zone i and zone j. 
 
Variables that measure transit and highway accessibilities are given in Table 4-5.  The area for 
which the variable was computed, the method used to calculate the opportunities, the type of 
opportunities, and the type of transit and highway travel times are also indicated for each 
variable. 
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Table 4-4. Tract Level Transit Accessibility Variables 

Variable Area Used Method Use 
for Oi 

Type of Opportunities Skim Used
AccessTWSC1 Buffer area Land Use Service+comm. employment TSkimW 
AccessTWSC2 Buffer area Property Service+comm. employment TSkimW 
AccessTWSC3 Buffer area Buffer Service+comm. employment TSkimW 
AccessTWSC4 Tract Tract Service+comm. employment TSkimW 
AccessTWEm1 Buffer area Land Use Total employment TSkimW 
AccessTWEm 2 Buffer area Property Total employment TSkimW 
AccessTWEm 3 Buffer area Buffer Total employment TSkimW 
AccessTWEm4 Tract Tract Total employment TSkimW 
AccessTWPop1-2 Buffer area Land Use Population  TSkimW 
AccessTWPop3 Buffer area Buffer Population  TSkimW 
AccesstWPop4 Tract Tract Population  TSkimW 
AccessBSC1 Buffer area Land Use Service+comm. employment TSkimB 
AccessBSC2 Buffer area Property Service+comm. employment TSkimB 
AccessBSC3 Buffer area Buffer Service+comm. employment TSkimB 
AccessBSC4 Tract Tract Service+comm. employment TSkimB 
AccesstBEm1 Buffer area Land Use Total employment TSkimB 
AccesstBEm2 Buffer area Property Total employment TSkimB 
AccesstBEm3 Buffer area Buffer Total employment TSkimB 
AccesstBEm4 Tract Tract Total employment TSkimB 
AccesstBPop1-2 Buffer area Land Use Population  TSkimB 
AccesstBPop3 Buffer area Buffer Population  TSkimB 
AccesstBPop4 Tract Tract Population  TSkimB 
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Table 4-5. Tract Level Transit-Highway Accessibility Differences 
Variable Area Used Method Use for Oi Type of Opportunities Skims Used 
Wth1SC1 Buffer area Land Use Service+comm. Emp. TSkimW – FFSkim 
Wth1SC2 Buffer area Property Service+comm. Emp. TSkimW – FFSkim 
Wth1SC3 Buffer area Buffer Service+comm. Emp. TSkimW – FFSkim 
Wth1SC4 Tract Tract Service+comm. Emp. TSkimW – FFSkim 
Wth2SC1 Buffer area Land Use Service+comm. Emp. TSkimW – FFSkimT 
Wth2SC2 Buffer area Property Service+comm. Emp. TSkimW – FFSkimT 
Wth2SC3 Buffer area Buffer Service+comm. Emp. TSkimW – FFSkimT 
Wth2SC4 Tract Tract Service+comm. Emp. TSkimW – FFSkimT 
Wth1Em1 Buffer area Land Use Total employment TSkimW – FFSkim 
Wth1Em2 Buffer area Property Total employment TSkimW – FFSkim 
Wth1Em3 Buffer area Buffer Total employment TSkimW – FFSkim 
Wth1Em4 Tract Tract Total employment TSkimW – FFSkim 
Wth2Em1 Buffer area Land Use Total employment TSkimW – FFSkimT 
Wth2Em2 Buffer area ProeprtyProperty Total employment TSkimW – FFSkimT 
Wth2Em3 Buffer area Buffer Total employment TSkimW – FFSkimT 
Wth2Em4 Tract Tract Total employment TSkimW – FFSkimT 

Wth1Pop1-2 Buffer area Land Use Population TSkimW – FFSkim 
Wth1Pop3 Buffer area Buffer Population TSkimW – FFSkim 
Wth1Pop4 Tract Tract Population TSkimW – FFSkim 

Wth2Pop1-2 Buffer area Land Use Population TSkimW - FFSkimT 
Wth2Pop3 Buffer area Buffer Population TSkimW - FFSkimT 
Wth2Pop4 Tract Tract Population TSkimW - FFSkimT 
Bth1SC1 Buffer area Land Use Service+comm. Emp. TSkimB – FFSkim 
Bth1SC2 Buffer area Property Service+comm. Emp. TSkimB – FFSkim 
Bth1SC3 Buffer area Buffer Service+comm. Emp. TSkimB – FFSkim 
Bth1SC4 Tract Tract Service+comm. Emp. TSkimB – FFSkim 
Bth2SC1 Buffer area Land Use Service+comm. Emp. TSkimB – FFSkimT 
Bth2SC2 Buffer area ProeprtyProperty Service+comm. Emp. TSkimB – FFSkimT 
Bth2SC3 Buffer area Buffer Service+comm. Emp. TSkimB – FFSkimT 
Bth2SC4 Tract Tract Service+comm. Emp. TSkimB – FFSkimT 
Bth1Em1 Buffer area Land Use Total employment TSkimB – FFSkim 
Bth1Em2 Buffer area Property Total employment TSkimB – FFSkim 
Bth1Em3 Buffer area Buffer Total employment TSkimB – FFSkim 
Bth1Em4 Tract Tract Total employment TSkimB – FFSkim 
Bth2Em1 Buffer area Land Use Total employment TSkimB – FFSkimT 
Bth2Em2 Buffer area Property Total employment TSkimB – FFSkimT 
Bth2Em3 Buffer area Buffer Total employment TSkimB – FFSkimT 
Bth2Em4 Tract Tract Total employment TSkimB – FFSkimT 

Bth1Pop1-2 Buffer area Land Use Total population TSkimB – FFSkim 
Bth1Pop3 Buffer area Buffer Total population TSkimB – FFSkim 
Bth1Pop4 Tract Tract Total population TSkimB – FFSkim 

Bth2Pop1-2 Buffer area Land Use Total population TSkimB - FFSkimT 
Bth2Pop3 Buffer area Buffer Total population TSkimB - FFSkimT 
Bth2Pop4 Tract Tract Total population TSkimB - FFSkimT 
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4.5 Transit Users’ Socioeconomic Characteristics 
 
Studies that have investigated transit users’ socioeconomic/demographic characteristics 
including age, education, ethnicity, gender, household structure, vehicle availability, etc., have 
led to contradictory conclusions.  For example, income was found to have insignificant impacts 
on transit use by Sun et al. (1998), Loutzenheiser (1997), Gray and Thompson (1996), Spillar 
and Rutherford (1990), Holtzclaw (1990), and Nelson and O'Neil (1982).  However, the majority 
of literature concluded otherwise.  Similar conflicting findings on age, gender, and vehicle 
availability variables can also be found in the literature. 
 
While it is desirable to include some socioeconomic variables in the model calibration, the data 
from the TOB survey of individual transit user are not utilized in this study.  Due to the survey’s 
relatively small sample size in a given tract and its focus on transit users only, the socioeconomic 
information collected from TOB survey was considered unrepresentative and thus was excluded.  
Only the socioeconomic variables that can reveal the true characteristics of the entire tract 
population were included in the analysis since the regression model was calibrated with data 
aggregated at the tract level.  Census data are commonly employed to generate the 
socioeconomic and demographic data at the tract level.  Numerous variables were therefore 
prepared from available census data.  Income data from the 2000 census were not available at the 
time of this writing.  Because of the additional efforts required to obtain the 1990 income data at 
the tract level from the Census Bureau, income information from the Census was not included in 
the model calibration. 
 
Table 4-6 lists the variables included in the analyses as socioeconomic indicators.  The average 
assessed value of properties in a tract was obtained using GIS property data and the tax 
appraiser’s database.  This variable was used as a measure of income level in a tract.  The 
advantage of this information over income data from census is that they are always up-to-date 
while census is available only every ten years.  For multi-family properties, assessed values for 
apartments were not available on a unit basis and were not included in the analyses. 
 

Table 4-6. Socioeconomic Variables 
Variable Name Description 

AvgSFValue Average single-family housing value 
AvgMFValue Average multi-family housing value 

AvgValue Average housing value 
AvgCOMValue Average commercial property value 
AvgINDValue Average industrial property value 
AvgSERValue Average service property value 
AvgEMPValue Average nonresidential property value 
AvgAuto0Child Average number of cars owned by households without children 
AvgAutoChild Average number of cars owned by households with children 

SFDUNoAuto% Percentage of single-family households with no automobiles in a tract 
MFDUNoAuto% Percentage of multi-family households with no automobiles in a tract 

DUNoAuto% Percentage of households with no automobiles in a tract 
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The average values of properties that were of commercial, service, and industrial type as well as 
that for all nonresidential properties were also calculated.  Auto ownership was another possible 
proxy for income.  Auto ownership data came from two sources: the 1999 ZDATA1 file and the 
1999 ZDATA1a file, both prepared by the Miami-Dade County Planning Department.   
ZDATA1a file contains data for the lifestyle groups that are used in the trip generation step in 
the FSUTMS model, while ZDATA1 file contains data for the standard trip generation of 
FSUTMS.  Based on data from ZDATA1a, data for the following variables were prepared: 
average number of cars in households without children (AvgAuto0Child) and average number of 
cars in households with children (AvgAutoChild).  Data on percentage of single-family 
households with no cars (SFDUNoAuto%), percentage of multi-family households with no cars 
(MFDUNoAuto%), and percentage of all households with no cars (DUNoAuto%) were 
aggregated from TAZ level to tract level from the ZDATA1 file.  Because auto ownership data 
were computed for the entire tracts, they were only used in Regression Model 3, in which the 
dependent variable was the ratio of the number of transit trip samples in a tract to the tract 
population. 
 
4.6 Demographics 
 
The sources of demographic data were the 1999 ZDATA1a file for Miami-Dade County and 
2000 census.  The variables based on data from the ZDATA1a file included percentages of 
households without children (%HH0Child), Average number of workers in households without 
children (AvgWrkr0Child), average number of workers in households with children 
(AvgWrkrChild), average number of persons in households without children (AvgP0Child), and 
average number of persons in households with children (AvgPChild).  The data were given at 
TAZ level.  Aggregating the data to the tract level was straight forward by simple summations.  
Race groups from the 2000 Census data were considered to be potential explanatory variables.  
Table 4-7 lists the variables that concern the race.  Only single races were included (about 3.8% 
of population declared they are of mixed race).  Since the Census data are provided at the tract 
level, no additional processing was necessary.  Variable ForeignBorn is the percentage of 
immigrant population in a census tract.  Since this information was not available in Census 2000 
data at the time of this writing, Census 1990 data were used. 
 

Table 4-7. Demographic Variables 

Variable Description 
%HH0Child Percentage of households without children 
AvgWrkr0Child Average number of workers in households without children 
AvgWrkrChild Average number of workers in households with children 
AvgP0Child Average number of persons in households without children 
AvgPChild Average number of persons in households with children 
White Percentage of population that are White in a tract 
Black  Percentage of population that are Black in a tract 
Native Percentage of population that are American Indian or Alaska Native in a tract 
Asian Percentage of population that are Asian and Pacific Islander in a tract 
Hispanic Percentage of population that are Hispanic origin in a tract 
ForeignBorn Percentage of population that are immigrants in a tract 
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4.7 Data for Broward County 
 
For Broward County, the GIS data on bus stops were available from Broward County Transit 
Agency (BCTA).  Therefore, the study area included the entire county.  However, since 
information for land use and property was not available, only buffer method and tract level 
analysis could be performed.  The available independent variables may be classified into the 
following four categories: transit LOS (shown in Table 4-8), land use (Table 4-9), accessibility 
(Tables 4-10 through 4-12), and socioeconomic (Tables 4-13 and 4-14).  The headway 
information provided by Broward County Transit Agency did not include number of bus or peak 
hour information.  Therefore, only average headway (AVGHDWAY) and weighted average 
headway (WAVGHDWAY) were compiled. 
 

Table 4-8. Transit LOS Variables for Broward County 
Variable Name Description 
ServiceArea% Percentage of tract area served by transit based on ¼-mile buffers around 
Avghdway Composite average daily headway in a tract
WAvghdway Composite peak hour headway for a tract weighted by service area  

 
Table 4-9. Land Use Variables for Broward County 

Variable Name Source Description 
TotalDUDenity3 Census 2000 Total dwelling unit density in buffer area of a census tract 
TotalDUDenity4 Census 2000 Total dwelling unit density in a census tract 
TotalPopDensity3 Census 2000 Total population density in buffer area of a census tract 
TotalPopDensity4 Census 2000 Total population density in a census tract 
ComEmpDensity3 1999 ZDATA2 Commercial employment density in buffer area of a tract 
ComEmpDensity4 1999 ZDATA2 Commercial employment density in a census tract 
ServEmpDensity3 1999 ZDATA2 Service employment density in buffer area of a tract 
ServEmpDensity4 1999 ZDATA2 Service employment density in a census tract 
IndEmpDensity3 1999 ZDATA2 Industrial employment density in buffer area of a tract 
IndEmpDensity4 1999 ZDATA2 Industrial employment density in a census tract 
TotalEmpDensity3 1999 ZDATA2 Total employment density in buffer area of a census tract 
TotalEmpDensity4 1999 ZDATA2 Total employment density in a census tract 
TotalDensity3  Total employment plus population density in buffer area 
TotalDensity4  Total employment plus population density in a tract 
JOBS_HH3  Jobs-housing balance in buffer area of a census tract 
JOBS_HH4  Jobs-housing balance in a census tract 
JOBS_HH3m  Modified jobs-housing balance in buffer area of a tract 
JOBS_HH4m  Modified jobs-housing balance in a census tract 

 
Table 4-10. Tract Level Highway Accessibility Variables for Broward County 

Variable Type of Opportunities (Oi) Skim Used 
AccessH1SC Service+comm. employment FFSkim 
AccessH1Em Total employment FFSkim 
AccessHlPop Total population FFSkim 
AccessH2SC Service+comm. employment FFSkimT 
AccessH2Em Total employment FFSkimT 
AccessH2Pop Total population FFSkimT 
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Table 4-11. Tract Level Transit Accessibility for Broward County 
   Variable Method Use for Oj Type of Opportunities Skim Used 
AccessTWSC3 Buffer Service+comm. employment TskimW 
AccessTWSC4 Tract Service+comm. employment TskimW 
AccessTWEm3 Buffer Total employment TskimW 
AccessTWEm4 Tract Total employment TskimW 
AccessTWPop3 Buffer Population  TskimW 
AccessTWPop4 Tract Population  TskimW 
AccessBSC3 Buffer Service+comm. employment TSkimB 
AccessBSC4 Tract Service+comm. employment TSkimB 
AccesstBEm3 Buffer Total employment TSkimB 
AccesstBEm4 Tract Total employment TSkimB 
AccesstBPop3 Buffer Population  TSkimB 
AccesstBPop4 Tract Population  TSkimB 

 
Table 4-12. Tract Level Transit-Highway Accessibility Differences for Broward County 

Variable Method Use for Oj Type of Opportunities Skim Used 
Wth1SC3 Buffer Service+comm. Emp. TSkimW - FFSkim 
Wth1SC4 Tract Service+comm. Emp. TSkimW - FFSkim 
Wth2SC3 Buffer Service+comm. Emp. TSkimW - FFSkimT 
Wth2SC4 Tract Service+comm. Emp. TSkimW - FFSkimT 
Wth1Em3 Buffer Total employment TSkimW - FFSkim 
Wth1Em4 Tract Total employment TSkimW - FFSkim 
Wth2Em3 Buffer Total employment TSkimW - FFSkimT 
Wth2Em4 Tract Total employment TSkimW - FFSkimT 
Wth1Pop3 Buffer Population TSkimW - FFSkim 
Wth1Pop4 Tract Population TSkimW - FFSkim 
Wth2Pop3 Buffer Population TSkimW - FFSkimT 
Wth2Pop4 Tract Population TSkimW - FFSkimT 
Bth1SC3 Buffer Service+comm. Emp. TSkimB - FFSkim 
Bth1SC4 Tract Service+comm. Emp. TSkimB - FFSkim 
Bth2SC3 Buffer Service+comm. Emp. TSkimB - FFSkimT 
Bth2SC4 Tract Service+comm. Emp. TSkimB - FFSkimT 
Bth1Em3 Buffer Total employment TSkimB - FFSkim 
Bth1Em4 Tract Total employment TSkimB - FFSkim 
Bth2Em3 Buffer Total employment TSkimB - FFSkimT 
Bth2Em4 Tract Total employment TSkimB - FFSkimT 
Bth1Pop3 Buffer Total population TSkimB - FFSkim 
Bth1Pop4 Tract Total population TSkimB - FFSkim 
Bth2Pop3 Buffer Total population TSkimB - FFSkimT 
Bth2Pop4 Tract Total population TSkimB - FFSkimT 
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Table 4-13. Socioeconomic Variables for Broward County 
Variable Name Description 

AvgAuto0Child Average number of cars owned by households without children 
AvgAutoChild Average number of cars owned by households with children 

 
Table 4-14. Demographic Variables for Broward County 

Variable Name  Description 
%HH0Child Percentage of households without children 
AvgWrkr0Child Average number of workers in households without children 
AvgWrkrChild Average number of workers in households with children 
AvgP0Child Average number of persons in households without children 
AvgPChild Average number of persons in households with children 
White Percentage of population that are White in a tract 
Black  Percentage of population that are Black in a tract 
Native Percentage of population that are American Indian or Alaska Native in a tract 
Asian Percentage of population that are Asian and Pacific Islander in a tract 
Hispanic Percentage of population that are Hispanic origin in a tract 
ForeignBorn Percentage of population that are immigrants in a tract 

 
4.8 Data for Palm Beach County 
 
For Palm Beach County, GIS bus stop data were unavailable; therefore the buffer method could 
not be applied.  Consequently, only tract level analysis was performed.  The dependent variable 
was the ratio between the number of trip ends (either production or attraction or both) in a census 
tract and the tract population. 
 
The independent variables may be classified into the following three categories: land use, 
accessibility, and transit users’ socioeconomic/demographic characteristics.  They were compiled 
using the Tract Method.  These variables are listed in Tables 4-15 through 4-20. 
 

Table 4-15. Land Use Variables for Palm Beach County 
Variable Name Source Description 
TotalDUDenity4 Census 2000 Total dwelling unit density in a census tract 
TotalPopDensity4 Census 2000 Total population density in a census tract 
ComEmpDensity4 1999 ZDATA2 Commercial employment density in a census tract 
ServEmpDensity4 1999 ZDATA2 Service employment density in a census tract 
IndEmpDensity4 1999 ZDATA2 Industrial employment density in a census tract 
TotalEmpDensity4 1999 ZDATA2 Total employment density in a census tract 
TotalDensity4  Total employment plus population density in a tract 
JOBS_HH4  Jobs-housing balance in a census tract 
JOBS_HHm4  Modified jobs-housing balance in a census tract 
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Table 4-16. Tract Level Highway Accessibility Variables for Palm Beach County 
Variable Type of Opportunities (Oi) Skim Used 
AccessH1SC Service+comm. employment FFSkim 
AccessH1Em Total employment FFSkim 
AccessHlPop Total population FFSkim 
AccessH2SC Service+comm. employment FFSkimT 
AccessH2Em Total employment FFSkimT 
AccessH2Pop Total population FFSkimT 

 
Table 4-17. Tract Level Transit Accessibility Variables for Palm Beach County 

Variable Type of Opportunities Skim Used 
AccessTWSC4 Service+comm. employment TSkimW 
AccessTWEm4 Total employment TSkimW 
AccessTWPop4 Population  TSkimW 
AccessBSC4 Service+comm. employment TSkimB 
AccesstBEm4 Total employment TSkimB 
AccesstBPop4 Population  TSkimB 

 
Table 4-18. Palm Beach Tract Level Transit-Highway Accessibility Differences 

Variable Type of Opportunities Skim Used 
Wth1SC4 Service+comm. Emp. TSkimW - FFSkim 
Wth2SC4 Service+comm. Emp. TSkimW - FFSkimT 
Wth1Em4 Total employment TSkimW - FFSkim 
Wth2Em4 Total employment TSkimW - FFSkimT 
Wth1Pop4 Population TSkimW - FFSkim 
Wth2Pop4 Population TSkimW - FFSkimT 
Bth1SC4 Service+comm. Emp. TSkimB - FFSkim 
Bth2SC4 Service+comm. Emp. TSkimB - FFSkimT 
Bth1Em4 Total employment TSkimB - FFSkim 
Bth2Em4 Total employment TSkimB - FFSkimT 
Bth1Pop4 Total population TSkimB - FFSkim 
Bth2Pop4 Total population TSkimB - FFSkimT 

 
Table 4-19. Socioeconomic Variables for Palm Beach County 

Variable  Description 
AvgAuto0Child Average number of cars owned by households without children 
AvgAutoChild Average number of cars owned by households with children 
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Table 4-20. Demographic Variables for Palm Beach County 
Variable Description 

%HH0Child Percentage of households without children 
AvgWrkr0Child Average number of workers in households without children 
AvgWrkrChild Average number of workers in households with children 
AvgP0Child Average number of persons in households without children 
AvgPChild Average number of persons in households with children 
White Percentage of population that are White in a tract 
Black  Percentage of population that are Black in a tract 
Native Percentage of population that are American Indian or Alaska Native in a tract 
Asian Percentage of population that are Asian and Pacific Islander in a tract 
Hispanic Percentage of population that are Hispanic origin in a tract 
ForeignBorn Percentage of population that are immigrants in a tract 
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5. TRANSIT ACCESSIBILITY 
 
5.1 Introduction 
 
One of the objectives of this research is to develop a method more accurate than the traditional 
buffer method for estimation of population that have access to transit services.  Also of interest is 
if any new measures developed will have predictive power on transit use.  The development of 
methods for transit service population and employment will be presented in this chapter, and the 
testing of the new measures. 
 
A critical factor in transit planning transit mode share analysis is the level of accessibility to 
transit services by population and employment.  “Transit accessibility” here refers to the ability 
of residents and workers to reach transit facilities, including bus stops and/or rail stations. Transit 
accessibility is affected by many factors including safe, pleasant, and comfortable streets for 
walking to transit facilities, parking facilities for cars and bicycles, handicap access, and so on.  
The majority of transit users access transit systems by walking.  Walking distance is an important 
factor in the choice of transit use.  The TOB survey results indicated that individuals walk for 
over 75% of all trips from point of origin to transit station and from station to destination.7.  It is 
commonly accepted that most people are willing to walk up to 0.25 mile to use transit, and the 
farther away from the transit stops/stations, the less likely it is for people to use transit.  In this 
context, easy access to transit means proximity. 
 
Easy access to transit services also depends, to a large degree, on the design of a community. 
Traditional communities are typically laid out in a grid system, in which streets form the grid and 
residential and commercial developments occur along the streets. In such communities, street 
blocks are normally small and roads are well connected, allowing easy access to major roads 
where transit stops are often located. In recent years, the traditional neighborhood design (TND) 
approach has been used less often in suburban areas.  New developments in the American 
suburbs tend to be “enclosed” by a local street system design that limits access from a 
development to major roads.  Additionally, dead-end streets, cul-de-sacs, and community walls 
are popular means to seal a community off from the noisy traffic or to provide residents with a 
sense of security.  However, such an approach to neighborhood design has great implications to 
the transportation system since it tends to reduce public transit use and increase roadway 
congestion. 
 
Typically, transit accessibility is estimated using the geographic information system (GIS) buffer 
method to calculate the proportion of population or employees that are close to transit facilities 
such as bus stops or rail stations.  The buffer method assumes that population and employment 
are evenly distributed across the spatial unit of analysis, usually in terms of traffic analysis zones 
(TAZs), census tracts, or block groups.  Buffers around transit stops or stations are then created 
with a given size and are defined as the “service area.”  The percentage of population and 
employment that have access to transit facilities in a zone is assumed to be the same as the ratio 
of the buffer area falling within the zone to the total area of the zone.  Therefore, if a zone has a 
population of 1,000 and buffers created around transit stops/stations cover 20% of its total area, 

                                                 
7 The TOB survey results showed that 79.8% of the 4,152 surveyed trips involved walking to transit stops/stations 
from an origin, while 75.2% of the 4,159 trips involved walking to destinations after leaving the transit systems 
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the proportion of the population that is served by transit, or the service population, is assumed to 
be 1,000 � 20% = 200.  Everything else being equal, the larger the proportion of population and 
employees that fall in the service area, transit is more accessible, and it is more likely that transit 
ridership will be higher. 
 
In FUSTMS, the population and employment within 1/3- and 1-mile walking distances (referred 
to as short walk and long walk distances) from transit facilities are one type of the information 
used in estimating the transit mode share.  Population and employment figures are estimated for 
each traffic analysis zone (TAZ) using the buffer method in which a 1/3-mile or 1-mile buffer are 
created around transit routes or stops/stations.  Estimating potential ridership through the use of 
buffers around transit stops/stations will reduce errors caused by overestimation should buffers 
be utilized around transit routes with bus stop spacing larger than 0.25 mile. 
 
The buffer method, while used in FSUTMS as well as widely used by transit properties in their 
planning applications, is flawed in its fundamental assumption that population or employment in 
a zone is evenly distributed across the zone.  In reality, this assumption only holds occasionally 
when land use in a zone is uniform with the same density.  In most cases, a zone may have the 
same land use but density varies, or it may have different land uses with significant variations in 
density.  Another problem with the buffer method is the assumption that the walking distance for 
a transit user accessing a transit stop or a station is the same as Euclidian distance (also referred 
to as straight line or air distance).  The actual walking distance is, in fact, usually longer due to 
the “crookedness” of streets. A person may live near a transit stop; however, if no streets or 
walking paths connect his or her residence to the transit stop, the person does not have access to 
that transit stop.  Other problems that cannot be handled by the buffer zone method include 
natural or man-made barriers such as highways with limited access, canals, and community walls 
or fences that surround a development that prevent people from accessing transit facilities in a 
direct manner. 
 
Recognizing the problems underlying the buffer method, various researchers have looked for 
ways to improve the estimation of the transit service population.  O’Neill et al. (1995) developed 
the network ratio method, which assumes pedestrian travel occurs on streets, therefore lines of 
equal travel time or distance were constructed around a transit line defining its service area.  
Additionally, it is assumed that population is evenly distributed along streets. Therefore, the 
proportion of population within the transit service area was calculated as the ratio of total length 
of streets that are within the 1/4-mile walking distance to that of all streets. Hsiao et al. (1997) 
also employed this approach in the analysis of links between transit usage and pedestrian 
accessibility and demographics of transit users and found a strong relationship between bus 
riders and pedestrian access:  higher pedestrian access areas correspond to higher transit usage. 
 
The network ratio method would perform well in an area with a single density residential 
development (e.g. single family or multi-family housing), but could not account for land uses 
with different densities and could not handle barriers.  In order to improve the network ratio 
method, Zhao (1998) considered the population distribution in areas that include single- and 
multi-family land use.  The effect of barriers was also investigated.  Land use data were helpful 
in better depicting the population distribution, especially in cases when multi-family housing was 
concentrated in areas close to transit stops and that barriers could have significant negative 
impact on transit accessibility.  Zhao’s study points to the difficulty in collecting barrier 
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information in a large urban area.  Initial data collection will involve some significant effort, and 
the information will need to be updated from time to time as barriers change when, for example, 
a community wall is constructed or when pedestrian access is created.  In addition to density 
variations and barrier problems, the estimation of transit walk accessibility for a forecast year in 
FSUTMS when no street data or detailed land use data are available is an additional challenge if  
a method such as the network ratio method is to be used to estimate transit accessibility. 
 
The goal of the analysis described in this chapter is to develop a set of methodologies that can 
overcome problems associated with barriers and uneven distribution of population in the 
estimation of transit walk accessibility for the base year, and to forecast transit accessibility for 
future years given forecast population and employment data.  The objectives may be stated as 
follows: 
 
(1) Investigate existing data that provide better information on the spatial distribution of 

population and employment; 
(2) Develop a methodology to utilize existing population and employment data to improve 

the exiting methods for estimation of transit service population such as the buffer method 
and the network ratio method; 

(3) Develop a methodology that is capable of handling barriers, which does not require 
extensive field data collection; and 

(4) Develop a methodology to forecast transit accessibility given future land uses. 
 
The next section (Section 5.2) methodologies for estimating transit accessibility in terms of 
population and employees served by transit are described.  The analysis results are compared 
with those from the traditional buffer method as well as the network ratio method.  Section 5.3 
discusses the models developed for transit accessibility forecasting.  Section 5.4 presents analysis 
on auto access to transit. 
 
5.2 Transit Walk Accessibility 
 
In this section, methodologies for estimating transit walk accessibility are described. 
 
5.2.1 Estimation of Population Accessibility to Transit 
 
Zhao (1998) described the development of a modified network ratio method that considered 
walking distance to transit stops and dwelling unit distribution based on street network and land 
use data.  One problem associated with this method was the assumption that properties were 
evenly distributed along all streets.  However, some streets do not have properties on them, such 
as when it is merely an access road into a community or when there is a barrier like a community 
wall along one side or both sides of the street as illustrated in Figure 5-1.  The modified network 
ratio method has the potential for improvement if better knowledge of the spatial distribution of 
population and the existence of barriers can be obtained. 
 
To address the issue of population distribution, more detailed information on the spatial 
distribution of dwelling units than land uses is desired.  Such information can be obtained if 
parcel level GIS data are available.  Parcel GIS data are becoming increasingly available in 
Florida counties.  For the purpose of calculating the walking distance from a property to a transit 
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stop, parcel boundary data are not necessary.  Only a point representing the location of a property 
is needed.   The location of this point may be simply the centroid location of the polygon 
representing the property or the location of the front door of the property, reflecting the setback 
of the property therefore the additional walking distance on the property.  In our analysis, 
setbacks are not considered to be a significant component of the walking distance for residential 
properties.  They may be significant, however, for nonresidential establishments.  Due to a lack 
of accurate information on employment distribution, the method for estimating workers’ walk 
accessibility is unable to take setbacks into consideration. 
 

 
Figure 5-1. Streets That Do Not Allow Access to Transit from Properties 

 
The Miami-Dade County’s property tax database provides detailed information on each property, 
including the number of bedrooms.  While we do not have information on the household size for 
each residential property, the number of bedrooms in a dwelling unit may be considered a proxy 
indicator of the household size, which allows for a better estimation of population distribution. 
 
Determination of man-made barriers such as community walls has been identified a difficulty in 
(Zhao 1998).  Collecting such data will be expensive since field observation of every community 
will be necessary and field data will require significant effort to process to create a GIS database.  
Such a database will also need to be updated periodically to reflect any possible changes in 
existing barriers or addition of new barriers.  The solution to this problem lies in the fact that, if 
there is a barrier along a street, it is likely that there will be no properties having addresses on 
that street.  The occupants of properties located not on but nearby a street on which transit 
services are operated will need to access transit services via streets connecting to that street.  
This understanding leads to the assumption underlying the methodology described in this 
section, i.e. a property’s occupants can access transit services on a given street only if (1) it is 
located on that street; (2) it is connected by other streets to the street where transit services are 
available; and (3) it is within walking distance of a transit stop.  Making this assumption 
eliminates the need for hard coding barrier information. 
 
To determine on which street a property is located requires matching that property’s address with 
a street using GIS.  This, in turn, requires that addresses in the property tax database and the 
street attribute database must be formatted in a consistent manner.  Some processing was 
necessry to modify the Miami-Dade County property addresses to be consistent with the 
addresses in the street database.  The following steps describe the methodology for estimating 
population with walk accessibility to transit services. 
 
Step 1: Based on the transit stop locations, a transit service catchment area was determined by 

identifying street segments that were connected to a bus stop and were within a distance 
of 0.5-mile of the bus stop.  Here, “within a distance of 0.5-mile” means the walking 
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Streets
Properties
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distance along streets starting from a bus stop.  An example of the transit catchment 
area is shown in Figure 5-2, together with the street network, bus stop locations, and 
location of properties.  The size of a point representing properties indicates the 
estimated number of residents at that location. Expressways, freeways, and ramps have 
been excluded from the street network since pedestrians are not able to use them. 

 

 
 

Figure 5-2. Transit Catchment Area, Streets, and Property Distribution 
 
Step 2: The street network in the catchment area was intersected with TAZ to assign street 

segments to each TAZ. 
 
Step 3:  Using the TAZ population information from ZDATA1 file, which included single-

family and multi-family population, the average household sizes for the two types of 
residential properties (single- and multi-family) were calculated. 
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Step 4: The average household sizes within a TAZ, calculated in Step 3, were then used to 
estimate how many people might live on each property. 

 
(1) Decide household type (single-family or multi-family).  The type of residential 

properties was determined based on the CLU code in the property database.  After 
verifying the code description and land use type, including a field survey in some cases, 
the relationship between the CLU code and the type of dwelling units was established: 

 - CLU code 0001 and 0004 – single family   
 - Most (6518) of CLU code 0005 – single family 
 - CLU code 0002, 0003, 0006-0010 – multi-family  
 - A few (590) properties with CLUC 0005 – multi-family 
 
(2) Determine the number of bedrooms for each property. 

(a)  Join the property label point (LPROP) attribute table with the property tax file to 
obtain the number of bedrooms for each property.  Some multi-family properties 
with the same street address (for example, condominiums) were represented by 
the same label point in LPROP and shared one record in the LPROP 
(CLUC=0000) attribute table.  For these properties, the number of bedrooms had 
to be summed up for the reference record in LPROP. 

 
(b)  Deal with missing bedroom information.  In some property records, the number of 

bedrooms was missing.  For such single-family dwelling units, the number of 
bedrooms was assumed to be the average number of bedrooms in the TAZ 
calculated from property database records that had the number of bedroom 
information.  For multi-family dwelling units, the average bedroom number per 
unit was calculated by averaging the known numbers of bedrooms in properties of 
a particular multi-family dwelling type as defined by CLUC types, for example, 
2.68 bedrooms per townhouse. 

 
(c) Manually check and adjust inconsistencies and errors. For example, TAZ 47 

(mobile home park) had four commercial properties but a multi-family population 
of 3500. 

 
(3) Determine the household size for each property.  From 1999 ZDATA1, the population 

for the two types (single- and multi-family) of residential properties was found for each 
TAZ, which was then divided by the total number of bedrooms to get the average 
number of persons per bedroom.  These factors were applied to each property to find 
the household size. 

  
Step 5: Match residential properties in the LPROP file with street segments based on their 

addresses. To do so, address formats in both street network and property database were 
standardized.  For example, 103 Street was changed to 103rd St, 105th St Rd to 105th 
St, or 22nd Street to 22nd St., etc.  Properties were then snapped to the closest streets 
that matched their addresses. 

 
Step 6: Determine the negative impact of walking distance on transit accessibility.  The TOB 

survey data have indicated that the number of transit users decreases with the increase 
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in walking distance to transit stops.  Figure 5-3 shows the distribution of survey 
samples from the transit-onboard survey based on walking distance from or to home.  It 
is apparent from this data that the origin of most trips were within 1,800 feet of transit 
stops.  Few trips were more than 2,700 feet away from transit stops.  This is consistent 
with conclusions from other studies that transit use will sharply drop after the first 0.06 
mile (300 feet), and will diminish beyond 0.36 mile (1900 feet) from a transit stop or 
station (Lam and Morrall, 1982; Levinson and Brown-West, 1984). 

 

 
 

Figure 5-3. Frequency Distribution of Transit Trips versus Walking Distance 
 
To reflect the deterioration of transit use due to increasing walking distance to transit services, a 
decay function was estimated based on the data from the transit onboard (TOB) survey (applied 
in the next step) when the TAZ’s population within walking distance was calculated.  The 
procedure for estimating the decay function is described below. 
 
(1) Select samples of transit users walking to transit stops from their homes or walking to 

their homes from transit stops from TOB survey data.  There were a total of 744 such 
samples.  Twenty-two of these 744 samples were excluded because of possible geocoding 
errors (e.g. some claimed that they walked less than three blocks, ranging from less than 
1000 ft to 2000 ft on street network, but their homes were located more than 2000 feet 
away from the closest transit stops); 722 samples were used. 

(2) Calculate the walking distances from the homes of those 722 transit users to the closest 
transit stops based on shortest path algorithms. 

(3) Calculate the frequencies of the samples based on walking distances based on equal 
intervals, a minimum five samples in each interval, and 10 intervals.  Intervals of 200, 
300, and 400 feet were tested. 

(4) Normalize the frequencies by the population living within each interval contour.  To 
estimate the population living inside each interval contour, the walking distance between 
each property and the closest transit stop was calculated based on network analysis.  
Since the household size of each property has been estimated based on the number of 
bedrooms, as described in Step 4, the population within each interval contour (in 
increment of 300 feet) was calculated for the entire study area.  For instance, there were 
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196 samples of which the residence was located between 300 and 600 feet of a transit 
stop.  The population living within this contour interval was found to be 113,587.  Thus 
the normalized frequency was 196/113,587 = 0.00172556.  The normalized frequencies 
were then multiplied by a constant such that the maximum frequency, which occurred in 
interval [0, 300], was 1.0.  This constant did not affect the power of the exponential 
function estimated, only its coefficient, which was not of interest. 

(5) Fit the weighted frequency with an exponential curve.  The 400-feet interval grouping 
had one interval with no samples and was not used.  The 200-feet intervals resulted in a 
R2 of 0.6897, and the 300-feet intervals produced a R2 of 0.7703.  The 300-feet interval 
was selected because of its higher R2.  The decay function has the following form: Decay 
function = exp(-0.0013 x), where x is the walking distance from a transit stop.  The fitted 
curve is shown in Figure 5-4.  The above decay function indicates the rate at which 
transit use will decrease as walking distance grows relative to the transit use in areas 
within 300 feet of a bus stop.  Farther than 0.5 mile away from a transit stop, transit use 
diminishes to three percent of that within 300 feet of a transit stop.  Therefore, in 
calculating percent of population served by transit and considering the likelihood of their 
use of transit based on walking distance, use of 0.5 mile as the limit for walk access for 
the purpose of evaluating transit accessibility by foot is reasonable. 

 

 
Figure 5-4. Estimation of the Decay Function  

 
Step 7: The total population served by transit in a TAZ was obtained by summing the estimated 

household size along the street segments in the catchment area within 0.5 mile of 
walking distance, weighted by the decay function. 

 
Step8: The percentage of population with walk access to transit services in a TAZ was the 

ratio of the total population served by transit in the TAZ to the total population in the 
TAZ. 
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To compare the result from the above procedure with those of the traditional buffer method and 
the network ratio method, a 0.25-mile buffer size and walking distance were assumed and a 
selected area was examined (see Figure 5-5).  For the area shown in Figure 5-5, the populations 
served by transit based on each of the three methods are compared in Table 5-1. 
 

Figure 5-5. Transit Catchment Area, 0.25-mile Buffer, Streets, and Property 
Distribution 

 
The first column identifies the TAZs used in the comparison.  The second column provides the 
zonal population as given in the 1999 ZDATA1 file.  The third and fourth columns are the 
population served and percentage of population served by transit, respectively, based on the 
buffer method, with a buffer size of 0.25 mile.  The fifth and sixth columns provide the same 
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information obtained using the network ratio method, which assumes that population is evenly 
distributed along streets within 0.25-mile walking distance (and walking is assumed to happen 
along streets).  The seventh and eighth columns show the results from the distance decayed 
method, in which walking distance is assumed to be up to 0.25 mile, the decay function is 
applied, and actual property locations are used to estimate population distribution along streets.  
The last two columns measure the differences between the distance decayed method and the two 
other methods in terms of percentage of difference.  It may be seen that while the network ratio 
method in most cases results in a reduction in the service population when compared to the 
buffer method, the distance decayed method reduces the service population significantly and 
consistently, a result due mainly to the application of the decay function. 
 

Table 5-1. Comparison of Transit Service Population (1/4-Mile Distance) 
Buffer Method 

(1) 

Network Ratio 
Method 

(2) 

Distance 
Decayed Method 

(3) 
Difference (%) 

TAZ Population 
Pop. 

Served % Pop. 
Served % Pop. 

Served % (3)-(1) (3)-(2) 

867 4550 4550 100.0 3655 80.3 1490 32.8 -67.2 -47.6 
870 5045 4918 97.5 2643 52.4 1210 24.0 -73.5 -28.4 
873 2935 2034 69.3 1424 48.5 634 21.6 -47.7 -26.9 
874 3070 2257 73.5 1302 42.4 724 23.6 -49.9 -18.8 
875 1524 1296 85.0 1385 90.9 552 36.2 -48.8 -54.7 
876 2527 2409 95.3 2033 80.4 677 26.8 -68.5 -53.6 
877 3741 3537 94.6 1387 37.1 806 21.5 -73.0 -15.5 
878 1211 1026 84.8 624 51.5 199 16.4 -68.4 -35.1 
879 1938 1689 87.1 1282 66.1 596 30.8 -56.4 -35.4 
880 1696 1604 94.6 785 46.3 326 19.2 -75.4 -27.1 
881 1367 1312 95.9 703 51.4 245 17.9 -78.0 -33.5 
882 1119 942 84.2 299 26.7 147 13.1 -71.0 -13.6 

Total 30723 27574 89.8 17520 57.0 7605 24.8 -65.0 -32.3 
 
5.2.2 Estimation of Workers’ Accessibility to Transit 
 
Currently in FSUTMS, workers’ accessibility to transit services is estimated by the buffer 
method with some modification based on the consideration that most commercial developments 
are located near the main streets where transit services are provided.  For example, the 
percentage of workers in a TAZ served by transit calculated using the buffer method (which 
assumes even distribution of workers throughout a TAZ) may be doubled or even assumed to be 
100% (FDOT 1997).  Improving the estimation of workers’ access to transit services requires 
that location of employers and size of employment at each establishment be known.  Estimation 
of location, type, and size of employment has remained a challenge.  PBSJ (1998) discussed 
employment data sources and problems associated with them.  Comparison between the 
employment data in the Miami-Dade County 1999 ZDATA2 file and the American Sales Leads 
(formerly InfoUSA) data also revealed large discrepancies.  While it is possible to use a 
commercial employment database in employment transit accessibility analysis if the database has 
been verified and errors corrected, it has been decided for this study not to use the American 
Sales Leads’ data since the data have not been validated. 
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One possible improvement to the estimation of employment accessibility to transit may be by 
using the land use GIS data, which provide information of spatial extent of employment.  Miami-
Dade County has land use GIS data created based on parcel data.  The 1998 land use layer used 
in this study contains 18 different land uses.  For this study, these land uses were matched with 
those in FSUTMS to estimate trips produced by different land uses.  Table 5-2 establishes the 
equivalency between the 18 county land uses and the FSUTMS land uses. 
 

Table 5-2. Conversion between Dade County and FSUTMS Land Use Categories 

Land Use Description FSUTMS Land Use 
Category 

Agriculture, Industrial, Industrial Extraction Industrial 
Office, Airports/Ports, Communications, Utilities, Terminals, Plants, 
Institutions Service 

Shopping Centers, Commercial, Stadiums, Tracks Commercial 
Single-Family Single-Family 
Mobile Home Parks, Multi-Family (Including Migrant Camps), 
Townhouses, Two-Family (Duplex) Multi-Family 

Transient-Residential (Hotels/Motels) Hotel/Motel 
Water, Water Conservation Areas, Cemeteries, Parks (Including 
Preserves & Conservation), Streets/Roads, Expressways, Ramps, Vacant, 
Government Owned, Vacant Unprotected, Vacant, Protected, Privately 
Owned 

- 

 
The percentage of a given type of employment (industrial, commercial, and service) with access 
to transit service in a TAZ was estimated as the ratio between the area of the corresponding land 
use that fall within the transit buffer and the total area of that land use in the TAZ.  In this 
calculation, workers of each type were assumed to be evenly distributed in areas of the 
corresponding land use.  Figure 5-6 illustrates that for TAZs that do not fall into the 0.25-mile 
buffer of the bus stops, it is possible that some of the workers will not have transit access. 
 
The choice of 0.25-mile buffer size was based on the TOB survey data, which showed that 97.5 
of the transit trips were with 0.25 mile of a transit stop/station for non-home-based trips.  Table 
5-3 gives the cumulative percentages of transit trips from the TOB survey by walking distance. 
 

Table 5-3. Cumulative Percentages of Transit Trips by Walking Distance 
Walking 

Distance (ft) 
Number of 

Samples % Cumulative 
% 

0 – 100 71 10.36 10.36 
100 – 200 309 45.11 55.47 
200 – 300 100 14.60 70.07 
300 – 400 38 5.55 75.62 
400 – 500 41 5.99 81.61 
500 – 1000 92 13.43 95.04 
100 – 1320 17 2.48 97.52 

> 1320 17 2.48 100.00 
Total 685 100.00 100.00 
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Figure 5-6. Transit Buffer and Distribution of Nonresidential Land Use 

 
5.2.3 Estimation of Percentages of Trips with Transit Accessibility 
 
In Section 5.2.1, transit service population, defined as people that are likely to use transit within 
the transit catchment area, has been estimated using the detailed street network to calculate 
walking distance and property information to estimate population distribution in a zone.  In this 
section, the number of trips in a zone that may be made by transit mode is considered.  
 
In FSUTMS, the transit walk accessibility in a zone is estimated as the percentages of trips 
within a short walk distance of 1/3 of a mile and a long walk distance of one mile.  The buffer 
method is applied to create buffers of 1/3 of a mile and one mile around transit routes.  With the 
assumption that trips are evenly distributed throughout a zone, the percentage of the area of a 
zone covered by the buffer area becomes the percentage of trips that are candidates for transit 
mode.  In the absence of detailed information at the level of household types as defined in the 
trip production models (standard or lifestyle), even distribution of household, population, or trips 
is perhaps the best that can be achieved.  Should some information be available about household 
locations and types, it would be interesting to see how the spatial distribution of trips could be 
estimated. 
 
It would be possible to estimate the spatial distribution of trips if individual household location, 
household size, number of workers in household, number of children in household, and auto 
ownership were known.  For our study, we had information at zonal level on population, the 



 88 
 

 

number and locations of single-family dwelling units, the location and number of bedrooms of 
multi-family dwelling units, and the number of trips by purpose.  Information on workers, 
children, and auto ownership, which are variables in the trips generation model of the Miami-
Dade County FSUTMS model, was missing.  Households, therefore, must be aggregated over 
these variables, and trips can be assigned to these generalized households based only on 
household size. 
 
To convert the percentage of population with walk access to transit stops to the percentage of 
trips that may have a walk link to transit, the production trips must be first split between single-
family and multi-family households.  Trips by household type can then be assigned to each 
household according to the household size.  The five-step procedure is described below. 
 
Step 1.  Split production trips between single-family and multi-family households 
 
Since the 1999 FSUTMS trip generation model uses a lifestyle structure, separate production 
trips for single-family and multi-family households cannot be derived directly using the 
FSUTMS model.  Therefore, the following procedure was applied to obtained single-family and 
multi-family production trips for each TAZ: 
 
(1) Using Travel 2000 survey data, sums of single-family households, single-family trips, 

multi-family households, and multi-family trips for each survey district were calculated.  
Trip rates were calculated for single-family households and multi-family households 
separately.   

(2) The ratio of trip rates between single-family households and multi-family households in 
each survey district was calculated. 

(3) Since the TAZ structure used in the survey was different form the 1999 TAZ structure, 
TAZs in the 1999 ZDATA1 file were assigned to the corresponding survey district using 
GIS. 

(4) The 1999 FSUTMS model was run to obtain production trips for HBW (Home-Based 
Work) and HBNW (Home-Based Non-Work) trip purposes (since HBW and HBNW 
have different lifestyle trip rate structures) for each TAZ.  (Note: hotels from ZDATA1A 
were not included in the analysis because we only considered households.)   The 
production trips were split between single-family and multi-family households based on 
the number of households from ZDATA1 and the ratio of trip rates from Step (2). 

 
Step 2.  Assign non-HBW trips to single-family households by household size 
 
(1) From the 1999 FSUMTS model, trip rates of HBSHOP (Home-Based Shop), HBSOC 

(Home-Based Social-Recreation), HBSCH (Home-Based School), and HBO (Home-
Based Other) were added together for HBNW trip rates as shown below: 
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 Persons 
Children Vehicle 1 2 3 4+ 

Without 
Children 

0 
1 
2 

3+ 

0.32 
0.51 
0.75 
2.68 

0.58 
0.83 
1.19 
3.34 

1.09 
1.33 
2.27 
4.66 

3.19 
3.57 
4.37 
6.85 

With 
Children 

0 
1 
2 

3+ 

0.00 
0.00 
0.00 
0.00 

1.80 
2.17 
3.01 
5.57 

3.14 
3.47 
4.32 
6.89 

5.31 
5.67 
6.42 
8.99 

 
(2) The above HBNW trip rates were aggregated by household size since the information of 

auto ownership and presence of children was not available in the property file. 
 

(A)  From STP 283, the number of households in each cell was found: 
 

 Persons 
Children Vehicle 1 2 3 4+ 

Without 
Children 

0 
1 
2 

3+ 

57667
102246

9435
1320

21137
67613
86540
10637

3737
11672
20041
18200

1455 
3928 
7838 

18316 

With 
Children 

0 
1 
2 

3+ 

0
0
0
0

3527
9593
1435
196

6702
21964
32934
5677

13613 
38891 
74523 
41400 

 
(B) The number of households was multiplied with trip rates to obtain the number of 

trips in each cell. 
(C) The number of households and the number of trips by household size were 

summed. 
(D) Trip rates by household size was calculated with results shown below: 

 
Persons Household 

Size 1 2 3 4+ 
Trip Rates 0.48 1.19 3.54 6.61 

 
(3) HBNW trips were assigned to each single-family household based on the ratio of trip 

rates for different household sizes. 
 
Step 3. Assign non-HBW trips to multi-family households by household size  
 
In the property parcel GIS layer, a point may represent a property of an apartment with 300 
bedrooms or a group of condominium units with 100 bedrooms; both were considered multi-
family dwelling units.  To assign trips to these records, the number of households and the 
average household size in these complexes must be estimated.  From the survey data, the average 
household size was derived for different complex types: 
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MF Housing 
Type 

Average Household 
Size 

Duplex 2.66 
Apartment 2.32 

Condo 1.81 
Mobile Home 2.51 

 
The number of units of each complex was determined by dividing the number of residents by the 
average household size.  At this point, non-HBW trips were assigned to each multi-family 
household based on the ratio of trip rates for different household sizes. 
 
Step 4.  Assign HBW trips to single-family households by household size 
 
(1) The following HBW trip rates (from the 1999 FSUTMS model) were aggregated by 

number of workers in each household using a similar method as aggregating HBNW trips 
in Step 2. 
 

Workers Children Vehicle 0 1 2+ 

Without 
Children 

0 
1 
2 

3+ 

0 
0 
0 
0 

1.37 
1.48 
1.60 
1.71 

2.74 
3.07 
3.21 
3.98 

With 
Children 

0 
1 
2 

3+ 

0 
0 
0 
0 

1.43 
1.54 
1.65 
1.77 

2.79 
3.15 
3.28 
4.46 

 
 The aggregate trip rates by number of workers were: 
 

Workers 0 1 2+ 
Trip Rates 0 1.54 3.48 

 
(2) The number of workers in each household was not available in the property file.  

ZDATA1A was used to obtain the relationship between household size and number of 
workers for each TAZ.   For example, for TAZ 200, the ratio of number of workers to 
number of persons was 0.5312.  Therefore, for households with three people, the 
estimated number of workers was 1.59. 

 
(3) HBW trips was assigned to each single-family household based on the number of 

workers weighted by the ratio of trip rates for different number of workers (interpolate 
trip rates for decimal number of workers). 

 
Step 5. Assign HBW trips to multi-family households using the same method as for single-
family households. 
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A comparison of the results from assigning trips to households with the transit service population 
estimated in Section 4.2 revealed that they were similar, with a maximum 8% differences.  Table 
5-4 illustrates for the same TAZs as in Table 5-1 the differences in percentage of population 
served and percentages of trips served by transit.  For the trip purposes considered, including 
HBW and HB-Non-Work purposes, these percentages were virtually the same.  These small 
differences may be explained by the fact that household size is the main variable based on which 
the spatial distribution of trips is determined, as in the case of population.  Therefore, we may 
conclude that without detailed information of the spatial distribution of households of different 
types as specified in the FSUTMS trip generation model, the population estimate may suffice 
and an estimation of percentage of trips with transit service area may be unnecessary. 
 
Table 5-4. Comparison of Percentage of Population and Percentage of Trips Served by 

Transit within a 0.5-Mile Distance 

TAZ Population Pop. 
Served % HBW 

Trips 

HBW 
Trips 

Served
% HBNW 

Trips 

HBNW 
Trips 

Served 
% 

867 4550 1514 33.3 4033 1308 32.4 2052 6384 32.1
870 5045 1426 28.3 4296 1192 27.7 1838 6672 27.5
873 2935 795 27.1 2478 643 25.9 994 3929 25.3
874 3070 816 26.6 2619 717 27.4 1150 4202 27.4
875 1524 568 37.3 879 323 36.7 603 1645 36.6
876 2527 735 29.1 1469 414 28.2 781 2776 28.1
877 3741 1128 30.1 2603 781 30.0 1437 4782 30.0
878 1211 244 20.2 1209 245 20.3 509 2503 20.3
879 1938 659 34.0 1933 664 34.4 1385 4023 34.4
880 1696 412 24.3 1678 405 24.1 853 3508 24.3
881 1367 317 23.2 1482 342 23.1 681 2939 23.2
882 1119 205 18.3 1210 222 18.3 444 2418 18.4

Total 30723 8819 28.7 25887 7257 28.0 12724 45781 27.8
 
5.3 Forecast of Transit Accessibility 
 
Transit accessibility can be calculated for the base year model using the procedures outlined in 
the previous two subsections.  While most built out TAZs may have little change in land use 
density or street configuration for a future forecast year, some currently underdeveloped TAZs 
may see significant changes in its land use and street configuration.  The question thus arises: 
how can the transit accessibility for such TAZs be estimated for the future?  Forecast of “transit 
friendliness” has been described by John et al. (1997), where transit friendliness was defined by 
a set of criteria including pedestrian use of sidewalks (presence of sidewalk, presence of 
shoulder, width of side walk, paved or unpaved sidewalk), street crossing rating (roadway width, 
traffic speed, traffic control devices), transit amenities rating, which considered both the physical 
environment and services provided at transit stop/station areas.  The equation used for 
forecasting transit friendliness factor (TTF) was given as 
 
 TFFfuture = TFFbase + [(TFFmax – TFFbase) × (1 – ef(x))] 
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where f(x) is a function that governs TFF policy, which dictates how much change will occur in 
the transit environment between a base year and a future year. 
 
Cervero (2001) studied the pedestrian access to Bay Area Rapid Transit (BART) stations in San 
Francisco; his regression model (shown in Table 5-5) used 34 cases to predict the percentage of 
access trips to BART stations by walking for all trip purposes. 
 

Table 5-5. Regression Model For Predicting Percentage of Access trips to BART 
Stations by Walking, All Trip Purposes, 1992 (Cervero 2001) 
Variables Coefficients Standard 

Error Probability

Density  
Employment density (workers per acre in 0.5-mile buffer) 0.330 0.057 0.000 
Residential density (households per acre in 0.5-mile buffer) 1.130 0.314 0.001 
Land Use Type and Diversity  
Percent of residential land use in 0.5-mile buffer 0.532 0.312 0.100 
Normalized entropy index of land use mix in 0.5-mile buffer 55.746 35.308 0.127 
Transit Provisions  
Number of park-n-ride spaces at station -0.020 0.004 0.000 
Route miles per 1,000 households in 0.5-mile buffer -3.121 1.099 0.009 
Terminal or near terminal station: 0 = no, 1 = yes 19.569 6.886 0.009 
Constant -18.664 42.474 0.664 

 
The model had a R2 of 0.887; however, the land use type and diversity variables were difficult to 
forecast for a future year.  Additionally, the BART-related variables did not apply in most cases 
to a dominantly bus transit network. 
 
We attempt to forecast the walk accessibility as defined in Section 4 by identifying a set of 
variables that may be indicative of land use and street configuration and by establishing the 
relationship between transit accessibility with these variables.  The variables were selected based 
on the criteria that they could be forecast for the future year and their compilation required 
minimum data processing. 
 
Multiple regression models were developed for both production trips and attraction trips.  Since 
the percentage of transit service population and percentage of trips served by transit in a zone are 
similar, the former will be used as the measure of transit accessibility for production trips.  The 
transit accessibility for the attraction trips will be measured by the percentage of employees 
served by transit in a zone. 
 
Section 5.3.1 describes the regression model for forecasting transit accessibility for production 
trips.  Section 5.3.2 discusses the regression model used for forecasting transit accessibility for 
attraction trips.  Section 5.3.3 addresses transit access via automobile. 
 
5.3.1 Forecast of Transit Accessibility for Production Trips 
 
The dependent variable, or the variable to be forecast, is the percentage of population served by 
transit calculated using the distance decayed method described in Section 4.1.  The service 
population is estimated based on a 0.5-mile walk network and the application of the decay 
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function.  For forecast purposes, the independent variables to be used to predict the dependent 
variable must be able to describe future land use, street configuration, and transit services.  The 
data also need to be available and relatively easy to process.  Based on these considerations, the 
following variables are considered as possible independent variables: 
 

MHH_RATIO —  ratio of multi-family households to total zonal households 
TOTHH_DEN —  number of households per acre in a zone 
MPOP_RATIO —  ratio of multi-family population to total zonal population 
TOTPOP_DEN —  number of residents per acre in a zone 
COM_RATIO  —  ratio of commercial employees to total zonal employees 
SER_RATIO — ratio of service employees to total zonal employees 
EMP_DEN` — number of employees per acre in a zone 
EMPPOP_DEN — number of employees plus population per acre in a zone 
BUSRT_DEN — bus route density in feet per acre 
ST_INT_DEN — number of internal streets intersecting the boundary (per 1000 feet 

length of the TAZ perimeter) of a TAZ 
 
For all the variables except the last one, ST_INT_DEN, data are readily available or can be easily 
compiled.  The last variable, ST_INT_DEN, is an indicator of street configuration.  For instance, 
an area with grid street network and small blocks will have a larger number of intersections 
between the local streets and the TAZ boundary.  A community that has walls surrounding it 
with limited access roads and curvilinear streets will have a low number of intersections.  Figures 
5-7 and 5-8 illustrate the value ranges of ST_INT_DEN and the street network structure.  Figure 
5-9 shows the ST_INT_DEN values for TAZ for the study area.  It may be seen that there is a 
general trend that ST_INT_DEN value is higher in areas that are closer to downtown and that are 
older parts of the county.  ST_INT_DEN value deteriorates in the Miami Beach area and in 
suburban communities farther from downtown. 
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Figure 5-7. Value Ranges for ST_INT_DEN and Corresponding Mostly Grid Street 

Structures  
 

 
Figure 5-8. Ranges of Value of ST_INT_DEN and Corresponding Mostly Curvilinear 

Street Structures 
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Figure 5-9. Street Intersection Density Distribution by TAZ in Study Area 

 
For model development, 312 TAZs with nonzero HBW trips from the study area were selected.  
These TAZs were divided into two groups of equally size.  One group (156 TAZs) was used for 
model estimation and the other (156 TAZs) for model validation.   By applying the stepwise 
method to the first group of samples, the following variables were selected for linear regression. 
 

Root MSE              0.12721    R-Square     0.9000 
                       Dependent Mean        0.35641    Adj R-Sq     0.8974 
                       Coeff Var            35.69176                        
  
                                        Parameter Estimates 
   
                                    Parameter      Standard                           Variance 
   Variable     Label        DF      Estimate         Error   t Value   Pr > |t|     Inflation 
  
   MHH_RATIO    MHH_RATIO     1       0.17309       0.02599      6.66     <.0001       2.79945 
   EMP_DEN      EMP_DEN       1      -0.00174    0.00058241     -3.00     0.0032       1.60381 
   BUSRUT_DEN   BUSRUT_DEN    1       0.00349    0.00031891     10.95     <.0001       3.94884 
   INT_DEN      ST_INT_DEN    1       0.06481       0.01268      5.11     <.0001       3.23715 

 
The signs of the parameters estimated were reasonable and the variance inflation factors (VIF) 
did not indicate high correlations between independent variables.  Additionally, the correlation 
matrix did not show high correlation between selected explanatory variables.  However, since the 
partial R2 for EMP_DEN to enter the model was not significant, it was excluded for the next 
stepwise procedure.  The second candidate model was: 
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Root MSE              0.12759    R-Square     0.8994 

                       Dependent Mean        0.35641    Adj R-Sq     0.8967 
                       Coeff Var            35.79955                        
  
                                       Parameter Estimates 
   
                                    Parameter      Standard                           Variance 
   Variable     Label        DF      Estimate         Error   t Value   Pr > |t|     Inflation 
  
   MHH_RATIO    MHH_RATIO     1       0.20109       0.02835      7.09     <.0001       3.31199 
   EMPPOP_DEN   EMPPOP_DEN    1      -0.00154    0.00054337     -2.83     0.0053       3.06407 
   BUSRUT_DEN   BUSRUT_DEN    1       0.00339    0.00030890     10.99     <.0001       3.68253 
   INT_DEN      ST_INT_DEN    1       0.07171       0.01263      5.68     <.0001       3.19111 
 

The signs of the estimated parameters, VIF, and correlation matrix were inspected again.  The 
variable EMPPOP_DEN was removed because it was the last variable entered into the model 
with lowest partial R2.  The stepwise procedure was repeated and a new candidate model was 
obtained.  This procedure was repeated and three more candidate models were estimated: 
 

Model 3: (R2 = 0.8920) 
  0.00306*BUSRUT_DEN + 0.06978 * INT_DEN + 0.16933*MHH_RATIO 
 

Model 4: (R2 = 0.8841) 
  0.00343*BUSRUT_DEN + 0.11471 * SER_RATIO + 0.17777*MHH_RATIO 
 

 Model 5: (R2 = 0.8722) 
  0.00387*BUSRUT_DEN + 0.22723*MHH_RATIO 
 
For each candidate model, the standard influence on predicted value was checked for the 
presence of outliers.  After excluding outliers, the new models were: 
 
 Model 1: (R2 = 0.9206) 
 0.00306 � BUSRUT_DEN + 0.12808 � MHH_RATIO - 0.00138 � EMP_DEN + 0.09092 

� ST_INT_DEN 
 
 Model 2: (R2 = 0.9193) 
 0.00293 � BUSRUT_DEN + 0.14590 � MHH_RATIO - 0.00097273 � EMPPOP_DEN + 

0.09584 � ST_INT_RUT 
 
 Model 3: (R2 = 0.9174) 
 0.00271 � BUSRUT_DEN + 0.12409 � MHH_RATIO + 0.09550 � ST_INT_DEN 
 
 Model 4: (R2 = 0.8942) 
 0.00335 � BUSRUT_DEN + 0.15367 � MHH_RATIO + 0.12528 � SER_RATIO 
 

Model 5: (R2 = 0.8778) 
 0.00384 � BUSRUT_DEN + 0.20832 � MHH_RATIO  
 
To test the models, the second group of sample TAZs was used to calculate the errors in model 
predictions.  Table 5-6 measures the model performance in terms of their adjusted R2 and the sum 
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of square errors in their predictions.  It may be seen that Model 2 had a higher adjusted R2 but a 
larger prediction error than Model 3.  Although Model 1 had the highest adjusted R2 with the 
smallest prediction error, the result was not significantly better than Model 3, which had one less 
explanatory variable.  Therefore, the structures of both Model 1 and 3 were carried forward for 
the final model calibration, for which the parameters were estimated using both groups of sample 
TAZs. 
 

Table 5-6. Comparison of Five Accessibility Models 
 Model 1 Model 2 Model 3 Model 4 Model 5

R2 0.9206 0.9193 0.9174 0.8942 0.8778 
Sum of Square Prediction Errors 2.5975 2.6837 2.6192 3.1188 0.3680 

 
Using the same independent variables and both groups of TAZ, the model parameters were 
estimated again after examining the data for outliers and excluding them: 
 
Model 1  

Root MSE              0.10849    R-Square     0.9223 
                       Dependent Mean        0.35472    Adj R-Sq     0.9213 
                       Coeff Var            30.58513                        
  
                                          Parameter Estimates 
   
                                    Parameter      Standard                           Variance 
   Variable     Label        DF      Estimate         Error   t Value   Pr > |t|     Inflation 
  
   MHH_RATIO    MHH_RATIO     1       0.10752       0.01636      6.57     <.0001       2.76168 
   ST_INT_DEN   ST_INT_DEN    1       0.10303       0.00791     13.03     <.0001       3.43572 
   BUSRUT_DEN   BUSRUT_DEN    1       0.00307    0.00018911     16.26     <.0001       3.59523 
   EMP_DEN      EMP_DEN       1      -0.00122    0.00041498     -2.93     0.0036       1.48441 
 
Model 3  

Root MSE              0.10870    R-Square     0.9223 
                       Dependent Mean        0.35583    Adj R-Sq     0.9215 
                       Coeff Var            30.54963                        
  
                                       Parameter Estimates 
   
                                    Parameter      Standard                           Variance 
   Variable     Label        DF      Estimate         Error   t Value   Pr > |t|     Inflation 
  
   MHH_RATIO    MHH_RATIO     1       0.09586       0.01633      5.87     <.0001       2.74673 
   ST_INT_DEN   ST_INT_DEN    1       0.10730       0.00777     13.82     <.0001       3.32039 
   BUSRUT_DEN   BUSRUT_DEN    1       0.00289    0.00017305     16.69     <.0001       3.06967 

 
Model 1 has one more variable (employment density) than Model 3 and a lower adjusted R2.  
Therefore Model 3 was chosen to be the final model, which had the following form: 

 
Percentage of Service Population =  0.09586�MHH_RATIO + 0.10730�ST_INT_DEN + 

0.00289� BUSRUT_DEN  
 
The model states that the percentage of population in a zone served by transit increases with 
multi-family dwelling units, the number of intersections between internal streets and TAZ 
boundary, and bus route density. 
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All variables can be easily computed given future year dwelling units, employment, and bus 
route data.  The number of intersections between internal streets (ST_INT_DEN) and TAZ 
boundary will not always be available as in cases of TAZs that have not yet been developed.  
Because this variable is devised to reflect the philosophy of urban design, it may be considered a 
policy variable and must be determined based on the planning guidelines.  To facilitate the 
choice of a value for this variable, Table 5-7 is provided to select a value for ST_INT_DEN. 
 
Table 5-7. Recommended Values for Intersection Density for Different Types of Street 

Structures 

Street Structure Type 
Intersection Density 

Interval 
(ST_INT_DEN) 

No internal streets 0.0 
Mostly curvelinear, irregular, or cal-de-sac streets 0.0 – 1.0 
Majority grid, some discontinued, curvelinear, or 
irregular streets 

1.0 – 2.0 

Traditional/Neotraditional, mostly regular grid 2.0 – 3.0 
 
5.3.2 Forecast of Transit Accessibility for Attraction Trips 
 
To forecast transit accessibility for attraction trips, a regression model has been developed 
similar to that of production trips.  Recall that employment accessibility was estimated using the 
buffer method and land use information (see Section 4.2).  Because a large percentage of 
businesses are typically located near major arterials where buses operate, meaning that 
commercial land uses are mostly located near bus routes, the percentage of employment served 
by transit is high.  In fact, out of the 324 sample TAZs served by transit in the category “nonzero 
employees,” over 95% of the employees were served by transit in 190 TAZs (58.64%).   
Therefore, for forecasting purposes, small TAZs that fall completely within the transit buffer 
areas can be considered 100% accessible.  Such TAZs can be easily identified by calculating the 
percentage of the TAZs covered by buffers created around existing or planned transit routes.  For 
the TAZs that are not entirely served, other factors may come into play, such as limited transit 
service coverage and large TAZ size with nonresidential use (resulting in a larger number of 
employees that are too far away from transit stops).  Forecasting of employee transit accessibility 
for these TAZs is the focus of this section. 
 
The forecasting model is a regression model similar to that of the production trips.  The 
dependent variable is the percentage of employees in a zone served by transit.  The independent 
variables investigated include the following: 
 

COM_RATIO  — the ratio of commercial employees to total employees in a zone 
SER_RATIO — the ratio of service employees to total employees in zone 
SER_COM — the ratio of service and commercial employees to total 

employees in a zone 
EMP_DEN — the number of employees per acre 
EMPPOP_DEN — the number of employees and residents per acre 
C_AREA_RATIO — the ratio of commercial area to total area of a zone 
S_AREA_RATIO — the ratio of service area to total area of a zone 
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I_AREA_RATIO — the ratio of industry area to total area of a zone  
BUSRT_DEN — length (in feet) of bus routes per acre 

 
There are 128 sample TAZs with nonzero employees that had transit services within 0.25 mile 
and for which accessibility was lower than 95% (i.e., less than 95% of the employees had access 
to transit services).  The samples were divided into two equal-size groups (64 cases each) for 
model estimation and validation. 
 
Applying the step-wise selection procedure resulted in three variables being selected: 
SER_COM, EMPPOP_DEN, and BUSRT_DEN as shown in the following SAS output. 
 
 

Root MSE              0.22103    R_Square     0.9264 
                      Dependent Mean        0.75328    Adj R_Sq     0.9228 
                      Coeff Var            29.34275                        
  
                                       Parameter Estimates 
   
                                    Parameter      Standard                           Variance 
   Variable     Label        DF      Estimate         Error   t Value   Pr > |t|     Inflation 
  
   SER_COM      SER_COM       1       0.62747       0.06334      9.91     <.0001       4.59971 
   EMPPOP_DEN   EMPPOP_DEN    1      _0.00617       0.00169     _3.65     0.0006       2.19185 
   BUSRUT_DEN   BUSRUT_DEN    1       0.00901       0.00184      4.90     <.0001       5.04448 
 
There was no correlation between explanatory variables in this model.  However, the sign for 
EMPPOP_DEN did not seem reasonable.  Since this variable had the lowest partial R2, it was 
excluded for the next stepwise process.  The first candidate model was: 
 

Root MSE              0.24195    R_Square     0.9104 
                      Dependent Mean        0.75328    Adj R_Sq     0.9075 
                      Coeff Var            32.11991                        
  
                                       Parameter Estimates 
   
                                    Parameter      Standard                           Variance 
   Variable     Label        DF      Estimate         Error   t Value   Pr > |t|     Inflation 
  
   SER_COM      SER_COM       1       0.58846       0.06833      8.61     <.0001       4.46844 
   BUSRUT_DEN   BUSRUT_DEN    1       0.00675       0.00189      3.56     0.0007       4.46844 
 
Another candidate model was obtained by removing BUSRUT_DEN because of its lower partial 
R2. We then reapplied the stepwise selection: 
 
                       Root MSE              0.26347    R_Square     0.8920 
                       Dependent Mean        0.75328    Adj R_Sq     0.8903 
                       Coeff Var            34.97638                        
  
                                       Parameter Estimates 
   
                                    Parameter      Standard                           Variance 
   Variable     Label        DF      Estimate         Error   t Value   Pr > |t|     Inflation 
  
   SER_COM      SER_COM       1       0.80304       0.03520     22.81     <.0001       1.00000 

 
For both candidate models, the standard influence on predicted value was checked for presence 
of outliers, which were not found.  The sums of square errors were calculated for the two models 
using the second group of TAZs.  Table 5-9 compares the performance of two models. 
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Table 5-8. Comparison of Four Models for HBW Trips 
 Model 1 Model 2 

R2 0.9104 0.8903 
Sum of Square Prediction Errors 3.4466 3.8867 

 
Model 1 had a higher R2 and a smaller sum of square error, thus was selected as the final model 
structure.   The parameters were estimated again using data from both groups of sample TAZs. 
 
    Root MSE              0.23530    R_Square     0.9185 
                       Dependent Mean        0.77672    Adj R_Sq     0.9172 
                       Coeff Var            30.29440                        
  
                                       Parameter Estimates 
   
                                    Parameter      Standard                           Variance 
   Variable     Label        DF      Estimate         Error   t Value   Pr > |t|     Inflation 
  
   BUSRUT_DEN   BUSRUT_DEN    1       0.00663       0.00141      4.69     <.0001       4.92441 
   SER_COM      SER_COM       1       0.62169       0.04910     12.66     <.0001       4.92441 
 
There was one outlier, which was removed.  After re-estimating, SAS produced the following 
model: 
 
   Root MSE              0.23369    R_Square     0.9193 
                     Dependent Mean        0.77496    Adj R_Sq     0.9180 
                      Coeff Var            30.15564                        
  
                                       Parameter Estimates 
   
 
                                    Parameter      Standard                           Variance 
   Variable     Label        DF      Estimate         Error   t Value   Pr > |t|     Inflation 
  
   BUSRUT_DEN   BUSRUT_DEN    1       0.00707       0.00143      4.95     <.0001       5.10309 
   SER_COM      SER_COM       1       0.60447       0.04987     12.12     <.0001       5.10309 
 
The model may be written as  
 

Percentage of employees served = 0.00707 � BUSRUT_DEN + 0.60447 � SER_COM 
 
The model indicates that the percentage of employees served by transit in a zone increases with 
the ratio of service and commercial employees to total employees in a zone and with the bus 
route density in a zone. 
 
5.3.3 Auto Accessibility 
 
Some transit users access transit stations/stops by automobiles.  In FSUTMS, a certain distance 
(e.g., 10 miles) is assumed to be the distance limit for auto access.  Here we examine the auto 
access mode in terms of distance traveled by auto and the distance traveled by transit.  For this 
purpose, the TOB survey data collected in Miami-Dade County were used.  Survey samples were 
selected based on the following criteria: 
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�� The sample involved a tour that began or ended at home 
�� The sample involved the use of automobile to access transit station/stop at the home end 

of the tour.  The transit user could be a driver or a passenger during the trip to a transit 
stop/station by car. 

�� The origin and destination of the tour were geocoded. 
�� The non-home end of the tour was accessed by walk mode. 

 
Here a transit tour means a series of trips that begin at the home and end at a non-home 
destination, or vice versa, with one or more trips accomplished using transit.  The last condition 
was to ensure that the transit trip length could be estimated.  It was assumed that a transit user 
would not switch to a non-transit mode before completing all trip segments that involved the use 
of transit.  (Any walking occurring during transfers was assumed to be short and negligible).  If 
the user did not access the non-home-based end of a tour by walk mode, it would be impossible 
most of the time to determine where the transit user completed the transit portion of the tour.  On 
the other hand, if the non-home end of the tour was accessed by walk mode, the walking distance 
was reported in the survey, and the transit tour length could be estimated.  There were a total of 
54 samples that met the criteria. 
 
To estimate the auto access distance, park-n-ride locations were geocoded.  In addition to the 17 
parking-n-ride facilities at Metrorail stations, seven additional park-n-ride facilities existed in 
Miami-Dade County.  They were located at SW 152nd Street and U.S. 1, Cutler Ridge Mall on 
U.S. 1 in south Miami-Dade, SW 117th Avenue and 152nd Street, SW 104th Street and 
Hammocks Boulevard, SW 104th Street and SW 107th Avenue in Miami-Dade Community 
College, SW 107th Avenue and SW 72nd Street, and Golden Glades interchange that serve the 95 
express bus route.  Figure 5-10 illustrates the Metrorail alignment and stations, bus 95 routes and 
stops, and park-n-ride locations. 
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Figure 5-10. Metrorail Alignment, Bus 95 Routes, an Park-n-Ride Sites 

 
The length of the auto access trip and the length of the transit portion of the tour (D1 as shown in 
Figure 5-11) were estimated as follows.  Since the survey samples did not provide information as 
to which park-n-ride site the transit user drove to or was dropped off, it was assumed that the 
closest park-n-ride site to a user’s home was the one that was used.  Therefore, the auto access 
trip length was the shortest network distance between home and the closest park-n-ride location.  
The walking distance was estimated as the shortest distance from a Metrorail station or a 95 
express bus stop in downtown to the non-home tour end (D3 in Figure 5-11).  The transit tour 
length (D2 in Figure 5-11), which could include several linked transit trips if transfers were 
involved, was calculated as the route distance between the park-n-ride site and the transit tour 
non-home end. The tour might involve the use of multiple transit routes. 
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Figure 5-11. Transit Tours 
 
Table 5-9 provides the auto access distance, the transit trip distance, the walk access distance, 
and the ratio between the transit trip distance to auto access distance for each of the samples.  In 
Figure 5-12, the distribution of trip samples by auto access distance is plotted.  The average 
driving distance was 4.8 miles.  Most samples (92%) involved an auto access distance of less 
than 10 miles.  Therefore, the 10-mile limit assumption used in FSUTMS appears to be 
reasonable. 
 

Table 5-9. Home-Based Transit Linked Trips 

ID D1 
(mile) 

D2 
(mile) 

D3 
(mile) D2/D1 

51385 2.548 24.114 0.053 9.464 
50512 1.057 19.455 0.055 18.410 
51351 0.564 18.866 0.539 33.455 
51395 7.730 18.589 0.187 2.405 
50310 1.349 14.673 0.401 10.879 
50478 4.653 13.072 0.068 2.809 
50663 12.940 12.648 0.048 0.977 
50553 10.571 12.648 0.055 1.196 
50516 9.122 12.648 0.055 1.387 
50521 9.037 12.648 0.371 1.400 
50515 8.512 12.648 0.340 1.486 
51398 8.004 12.841 0.509 1.604 
50513 7.324 12.648 0.035 1.727 
50669 6.929 12.648 0.048 1.825 
50511 6.492 12.648 0.055 1.948 
50524 5.759 12.648 0.340 2.196 
50499 5.216 12.648 0.055 2.425 
50468 4.909 12.648 0.055 2.576 
50469 4.481 12.648 0.055 2.822 
50543 1.398 12.648 0.048 9.049 
50425 0.924 12.648 0.472 13.683 
50473 0.922 12.648 0.457 13.714 
50505 0.642 12.648 0.055 19.711 
50452 0.152 12.648 0.055 83.360 
50508 1.263 11.711 0.340 9.274 
50642 0.894 11.711 0.145 13.102 
50572 3.992 10.893 0.697 2.729 
50501 14.566 10.773 0.311 0.740 

Transit tour 
non-home 
end

Home Park-n-Ride Non-home tour end 

D1 D2
D3 
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ID D1 
(mile) 

D2 
(mile) 

D3 
(mile) D2/D1 

50546 9.158 10.773 0.311 1.176 
50559 4.598 10.773 0.372 2.343 
58144 1.490 10.540 0.060 7.074 
58157 5.160 10.510 0.120 2.037 
50455 9.178 10.414 0.257 1.135 
50539 7.598 10.414 0.180 1.371 
50518 3.948 10.414 0.280 2.638 
50533 3.297 10.414 0.180 3.159 
50635 3.045 10.414 0.292 3.420 
58147 8.410 10.350 0.110 1.231 
58151 5.260 10.350 0.110 1.968 
58142 2.070 10.350 0.110 5.000 
58139 7.800 10.340 0.030 1.326 
50608 0.377 10.007 0.311 26.531 
50520 5.665 9.648 0.521 1.703 
50646 1.566 9.648 0.121 6.159 
51352 8.657 8.941 0.724 1.033 
50595 2.250 8.512 0.260 3.784 
51374 3.798 8.175 0.074 2.152 
50380 1.995 8.175 0.553 4.098 
50739 1.992 8.175 0.553 4.103 
50424 10.977 5.941 0.055 0.541 
51354 1.662 3.898 0.053 2.345 
50369 1.890 2.658 0.551 1.407 
50625 1.768 2.299 0.311 1.301 
58141 3.220 1.200 0.310 0.373 
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Figure 5-12. Distribution of Transit Tours by Auto Access Distance 
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Figure 5-13 plots the data in Table 5-9, including the auto access distance, linked transit trip 
distance, and the ratio between the two.  While the auto access trip distance (D1) is plotted in an 
ascending order, the transit trip length (D2) does not reveal any trend, suggesting that transit trip 
length is not related to the auto access distance in Miami-Dade County.  From data provided in 
Table 5-9, it may be observed that ratio between transit trip length and auto access trip distance 
(D2/D1) rarely (less than 5% of the time) falls under 1.0.  The distribution of linked transit trips 
by trip length is shown in Figure 5-14.  It may be seen that most trips (72%) are between eight 
and 14 miles.  The average transit trip length is 11.2 miles, and the shortest transit trip is about 
1.3 miles.  This latter case was further investigated because of the short transit trip length 
compared to the auto trip length.  It is believed that the transit user in that particular case was 
taking advantage of a Park-n-Ride lot at the Golden Galdes interchange to park the vehicle and 
use transit as a shuttle service between the Park-n-Ride lot and the workplace. 
 

 
Figure 5-13. Comparison of Auto Access Distance and Linked Transit Trip Distance 
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Figure 5-14. Distribution of Linked Transit Trips by Length (miles) 
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6. REGRESSION ANALYSIS OF FACTORS CONTRIBUTING TO TRANSIT USE  
 
This chapter describes the multiple regression analyses performed to determine the most 
significant factors that affect transit use and that may be potentially incorporated into the 
FSUTMS modal split model.  The data used in the regression analyses are described in Chapter 
4, which are compiled using transit LOS, land use, demographics, and socioeconomic data at 
census tract level.   The newly developed transit LOS variable, DECAY_POP, i.e., transit service 
population as a percentage of total zonal population described in Section 5, is also included in 
the regression analysis for Miami-Dade County.  In the next section, the regression analysis 
procedure is briefly discussed.  Sections 6.2 and 6.3 describe the regression models obtained for 
Miami-Dade, Broward, and Palm Beach counties.  Section 6.4 further investigates variables that 
determine transit demand by controlling transit LOS variables.  Section 6.5 provides a summary 
of the results of the regression analyses. 
 
6.1 Multiple Linear Regression Analysis Procedure 

 
Regression is a commonly used statistical tool for a variety of problems due to its simplicity.  
The regression analysis may be used for a number of purposes, including prediction, variable 
screening, model specification (system explanation), and parameter estimation (Myers 1990).  In 
this study, the regression analysis was used for variable screening.  This means that only the 
importance of the variables to transit usage was determined and that the models were not to be 
used for prediction purposes. 
 
Linear models are merely empirical approximations and several models can have nearly equal 
performance in effectiveness.  As a result, a model selection procedure, aimed at reducing the 
number of candidate models to a relatively small set, was developed to identify variables that had 
a significant linear relationship with transit use.  These candidate models were then further 
investigated with more information on residuals, outlier and leverage computation, etc. 
 
The model selection procedure applied in the study is as follows: 
 

1. Create a pool of all the variables that may have effects on transit use; 
2. Specify zero intercept (see below for the reasons); 
3. Employ the stepwise procedure to select variables by specifying the significance levels to 

enter and stay in the model at 0.01;  
4. Run regression;  
5. Stop if no variables in the factor pool are entered in the model; otherwise, verify 

coefficient sign and exam variables' VIF for multicollinearity and Durbin-Watson 
statistics for autocorrelation; and  

6. Eliminate those variables that do not meet the criteria in Step 5 from the variable pool 
and go to Step 1.  If no variable are eliminated, go to Step 7.  

7. Log the model and remove variables in the resulting model from the variable pool.  Go to 
Step 2 if there are variables left in the variable pool. 

 
Fixing the intercept at zero allows slope estimation with retention of the virtues of least squares, 
for example, performing least squares with extra information, namely the known value of 
intercept introduced into the model.  Although one may argue that model intercept may not be 
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zero since some variations in the data may not be explained by the model variables, it is 
unimportant since we are attempting to identify the variables that may help better estimate the 
portion of person trips that are utilizing transit modes instead of determining the exact functional 
form of a transit ridership model.  Additionally, region-wide accessibility variables have been 
included in the analysis and it is only reasonable to assume that zero accessibility results in zero 
transit trips.  Consequently, intercept value was set to zero during the model selection. 
 
Stepwise regression was applied in the variable selection procedure due to the large number of 
regressor variables, making all possible regressions prohibitive.  One weakness of such a 
sequential algorithm is that it is designed to give one answer without providing information on a 
large number of subset models.  The truly best model, if it exists, may not survive in such a 
procedure.  Significance levels were set at 0.01 for regressor variables to enter and stay in the 
model in stepwise regression to assure only those with significant effects on transit use were 
included in the model. 
 
The variance inflation factors (VIF) for the ith regression coefficient can be written as: 
 

 
where 2

iR  is the coefficient of multiple determination of the regression produced by regressing 
the variable xi against the other regressor variables.  The stronger the multiple correlation in this 
artificial regression, the lower the precision in the estimate of the coefficient bi.  The VIFs 
represent a considerably more productive approach for detection of multicollinearity than do the 
simple correlation values.  They supply the user with an indication of which variables are 
causing multicollinearity and to what degree.  Although there are no fixed rules regarding what 
values of VIF are sure signs of multicollinearity, it is generally believed that if any VIF exceeds 
10, there is a reason for at least some concern, warranting considerations of variable deletion or 
alternatives to least squares estimation to combat the problem. 
 
Note that once the regressor variables were eliminated, they were not moved back to the 
independent variables pool for the remaining regression runs.  The procedure would reveal 
variables that met the minimum R2 criteria but were prevented from entering the model by 
variables with larger partial F values.  The procedure, however, was not designed to produce all 
probable models, which required every possible combination of variables to be tested.  Since 
variables were removed due to violation of multicollinearity, autocorrelation, and, in some 
occasions, judgmental criteria, it was expected that most variables eliminated from the pool were 
not the factors that had great impacts on transit use. 
 
6.2 Regression Results for Miami-Dade County 
 
Tables 6-1 to 6-8 show the candidate models for production and attraction transit trips for 
Miami-Dade County.  The first column indicates the sequence in which a model was calibrated.  
There might have been more models calibrated that are not included in the lists in the tables due 
to violation of the model selection criteria. 
 

21
1

iR
VIF

�

�
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Table 6-1. Transit Production Trip Models for Miami-Dade (GIS Land Use Method)* 
Order Model** Adjusted R2 MSE

1 4.08337 � AccessTWPop1 - 2.273877E-7 � AvgCOMValue 0.7872 1.04107
2 3.46374 � AccessBPop1 + 1.90323 � AvgEntropy 0.7429 1.25766
3 3.93377 � AccessTWEm1 + 0.01213 � Dailybus 0.7174 1.38244
4 3.79545 � AccessTWSC1 + 0.87198 � Bth1Pop1 0.7153 1.39300
5 0.02645 � DECAY_POP + 3.40651 � AccessBEm1 0.7106 1.41602
6 1.42110 � AccessH1SC + 0.00178 � WDailybus 0.7045 1.44569
7 2.65313 � AccessH2SC 0.6632 1.64778
8 2.62374 � AccessH1Em 0.6628 1.64980
9 2.63267 � AccessH2Em 0.6612 1.65746

10 2.96676 � AccessH1Pop - 0.16291 � WAvghdway 0.6875 1.52874
11 2.32094 � AccessH2Pop 0.6536 1.69485
12 0.32101 �  SFDUDensity1 0.6520 1.70242
13 2.35974 � Wth1Pop1 - 1.07394 � Avghdway 0.6801 1.56489
14 1.89892 � Wth2Pop1 0.6506 1.70953
15 2.29572 � Wth1Em1 - 0.16524 � WPeakhdway 0.6716 1.60659
16 1.85250 � Wth2Em1 0.6455 1.73456
17 1.84901 � Wth1SC1 0.6448 1.73777
18 1.84111 � Bth2Pop1 0.6415 1.75413
19 0.09369 � SFPopDensity1 0.6408 1.75732
20 1.81802 � Bth1Em1 0.6387 1.76736
21 1.81770 � Bth2Em1 0.6387 1.76754
22 1.81741 � Bth1SC1 0.6387 1.76762
23 1.81712 � Bth2SC1 0.6387 1.76779
24 2.11868 � ServiceArea% 0.6330 1.79551

Notes: 
*    The list does not include the models with the adjusted R2‘s that are less than 0.6. 
**   Variable descriptions in alphabetic order: 
AccessBEm1: transit best skim accessibility weighted by total employment. 
AccessBPop1: transit best skim accessibility weighted by population opportunities. 
AccessH1Em: highway Time1 accessibility weighted by total employment. 
AccessH1Pop: highway Time1 accessibility weighted by total population. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment. 
AccessH2Em: highway Time2 accessibility weighted by total employment. 
AccessH2Pop: highway Time2 accessibility weighted by total population. 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWEm1: transit walk skim accessibility weighted by total employment. 
AccessTWPop1: transit walk skim accessibility weighted by population opportunities. 
AccessTWSC1: transit walk skim accessibility weighted by service plus commercial employment. 
AvgCOMValue: Average commercial property value. 
AvgEntropy: land use mix in buffer area of a census tract. 
Avghdway: composite average daily headway in a tract. 
Bth1Em1: transit best skim over highway FFSkim weighted by total employment. 
Bth1Pop1:  transit best skim over highway FFSkim weighted by total population. 
Bth1SC1:  transit best skim over highway FFSkim weighted by service plus commercial employment. 
Bth2Em1:  transit best skim over highway FFSkimT weighted by total employment. 
Bth2Pop1:  transit best skim over highway FFSkimT weighted by total population. 
Bth2SC1:  transit best skim over highway FFSkimT weighted by service plus commercial employment. 
Dailybus: unweighted average number of bus runs per stop in a tract. 
DECAY_POP: percentage of service population. 
ServiceArea%: percentage of tract area served by transit based on ¼-mile buffers around. 
SFDUDensity1: single-family dwelling unit density in buffer area of a tract. 
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SFPopDensity1: single-family population density in buffer area of a tract. 
WAvghdway: composite daily headway for a tract weighted by service area. 
WDailybus: average number of bus runs per stop in a tract weighted by service area. 
WPeakhdway: composite peak hour headway for a tract weighted by service area. 
Wth1Pop1: transit walk skim over highway FFSkim weighted by total population. 
Wth1Em1: transit walk skim over highway FFSkim weighted by total employment. 
Wth1SC1: transit walk skim over highway FFSkim weighted by service plus commercial employment. 
Wth2Pop1: transit walk skim over highway FFSkimT weighted by total population. 
Wth2Em1: transit walk skim over highway FFSkimT weighted by total employment. 
 

Table 6-2. Transit Attraction Trip Models for Miami-Dade (GIS Land Use Method)*  
Order Model** Adjusted R2 MSE 

1 4.34419 � JOBS_HH1 + 3.14845 � ServiceArea% 0.5769 17.78523 
2 7.41456 � AccessTWPop1 0.5310 19.71456 
3 7.74808 � AccessBPop1 0.5272 19.87342 
4 6.20752 � AccessH1Pop 0.5249 19.97282 
5 7.69955 � AccessTWEm1 0.5241 20.00388 
6 6.23680 � AccessH2Pop 0.5228 20.05838 
7 7.73858 � AccessTWSC1 0.5227 20.06394 
8 7.96710 � AccessBEm1 0.5213 20.12173 
9 8.00816 � AccessBSC1 0.5207 20.14942 

10 7.07078 � AccessH1Em 0.5010 20.97579 
11 4.20759 � JOBS_HHm1 + 4.68718 � AccessH2Em 0.5317 19.68582 
12 7.09590 � AccessH1SC 0.4978 21.11049 
13 7.12104 � AccessH2SC 0.4953 21.21720 
14 0.06812 � Dailybus 0.4865 21.58746 
15 0.79084 � SFDUDensity1 0.4761 22.02462 
16 0.23093 � SFPopDensity1 0.4703 22.26703 
17 0.06905 � MFPopDensity1 0.4485 23.18487 
18 0.00491 � WDailybus + 0.00027380 � AvgParcelSize 0.4950 21.22858 

Notes: 
*   The list does not include the models obtained after the 18th model. 
**   Variable descriptions in alphabetic order: 
AccessBEm1: transit best skim accessibility weighted by total employment. 
AccessBPop1: transit best skim accessibility weighted by population opportunities. 
AccessBSC1: transit best skim accessibility weighted by service plus commercial employment. 
AccessH1Em: highway Time1 accessibility weighted by total employment. 
AccessH1Pop: highway Time1 accessibility weighted by total population. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment 
AccessH2Em: highway Time2 accessibility weighted by total employment 
AccessH2Pop: highway Time2 accessibility weighted by total population. 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWEm1: transit walk skim accessibility weighted by total employment. 
AccessTWSC1: transit walk skim accessibility weighted by service plus commercial employment. 
AccessTWPop1: transit walk skim accessibility weighted by population opportunities. 
AvgParcelSize: average parcel size of single- and multi-family properties in buffer area of a tract. 
Dailybus: unweighted average number of bus runs per stop in a tract. 
JOBS_HH1: job house balance. 
JOBS_HHm1: modified jobs-housing balance in buffer area of a census tract. 
MFPopDensity1: multi-family population density in buffer area of a tract. 
ServiceArea%: percentage of tract area served by transit based on ¼-mile buffers around. 
SFDUDensity1: single-family dwelling unit density in buffer area of a tract. 
SFPopDensity1: single-family population density in buffer area of a tract. 
WDailybus: average number of bus runs per stop in a tract weighted by service area. 
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Table 6-3. Transit Production Trip Models for Miami-Dade (Property Method)* 
Order Model** Adjusted R2 MSE 

1 3.64651 � AccessTWPop2 + 1.70315 � AvgEntropy 0.7688 1.46294 
2 3.99117 � AccessBPop2 + 0.97263 � Bth1SC2 0.7478 1.59539 
3 1.91722 � AccessH1SC + 0.00165 � WDailybus 0.7114 1.82629 
4 2.68863 � AccessH1Pop 0.6855 1.99016 
5 2.80528 � Wth1Pop2 - 0.17126 � WAvghdway 0.7105 1.83146 
6 3.07629 � Wth2Pop2 - 1.61882 � JOBS_HH2 0.7075 1.85038 
7 3.06468 � AccessH2SC 0.6846 1.99568 
8 2.69966 � AccessH2Pop 0.6843 1.99777 
9 3.03072 � AccessH1Em 0.6842 1.99840 

10 3.04198 � AccessH2Em 0.6830 2.00590 
11 2.16272 � Wth1Em2 0.6801 2.02391 
12 2.16232 � Wth2Em2 0.6801 2.02424 
13 2.15833 � Wth1SC2 0.6795 2.02809 
14 2.45539 � Bth1Pop2 - 0.00000458 � AvgParcelCOMSize2 0.6994 1.90164 
15 2.63279 � Bth2Pop2 - 0.17573 � WPeakhdway 0.6983 1.90913 
16 2.12266 � Bth1Em2 0.6737 2.06444 
17 2.12225 � Bth2Em2 0.6737 2.06481 
18 2.12157 � Bth2SC2 0.6736 2.06513 
19 0.20935 � SFDUDensity2 + 0.01523 � Dailybus 0.6861 1.98585 
20 2.43348 � ServiceArea% 0.6459 2.24023 
21 0.05325 � DECAY_POP 0.6456 2.24253 
22 0.04262 � TotalDensity2 + 0.00013569 � AvgParcelSize2 0.6437 2.25444 

Notes: 
* Models with the adjusted R2’s that are less than 0.6 are not included. 
** Variable descriptions in alphabetic order: 
AccessBPop2: transit best skim accessibility weighted by population opportunities. 
AccessH1Em: highway Time1 accessibility weighted by total employment. 
AccessH1Pop: highway Time1 accessibility weighted by total population. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment. 
AccessH2Em: highway Time2 accessibility weighted by total employment. 
AccessH2Pop: highway Time2 accessibility weighted by total population. 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWPop2: transit walk skim accessibility weighted by population opportunities. 
AvgParcelCOMSize2: average parcel size for commercial properties. 
AvgParcelSize2: average parcel size for all residential properties. 
AvgEntropy: land use mix in buffer area of a census tract. 
Bth1Em2: transit best skim over highway FFSkim weighted by total employment. 
Bth1Pop2: transit best skim over highway FFSkim weighted by total population. 
Bth1SC2: transit best skim over highway FFSkim weighted by service plus commercial employment. 
Bth2Em2: transit best skim over highway FFSkimT weighted by total employment. 
Bth2Pop2: transit best skim over highway FFSkimT weighted by total population. 
Bth2SC2: transit best skim over highway FFSkimT weighted by service plus commercial employment. 
Dailybus: unweighted average number of bus runs per stop in a tract. 
DECAY_POP: percentage of service population. 
JOBS_HH2: job house balance. 
ServiceArea%: percentage of tract area served by transit based on ¼-mile buffers around. 
SFDUDensity2: single-family dwelling unit density in buffer area of a tract. 
TotalDensity2: total employment plus population density in buffer area. 
WAvghdway: composite daily headway for a tract weighted by service area. 
WDailybus: average number of bus runs per stop in a tract weighted by service area. 
WPeakhdway: composite peak hour headway for a tract weighted by service area. 
Wth1Em2: transit walk skim over highway FFSkim weighted by total employment. 
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Wth1Pop2: transit walk skim over highway FFSkim weighted by total population. 
Wth1SC2: transit walk skim over highway FFSkim weighted by service plus commercial employment. 
Wth2Em2: transit walk skim over highway FFSkimT weighted by total employment. 
Wth2Pop2: transit walk skim over highway FFSkimT weighted by total population. 
 

Table 6-4. Transit Attraction Trip Models for Miami-Dade (Property Method)* 
Order Model** Adjusted R2 MSE 

1 0.54304 � SFPopDensity2 + 4.75169 � JOBS_HH2 0.6180 16.05603 
2 5.87543 � ServiceArea% 0.5439 19.17108 
3 7.41456 � AccessTWPop2 0.5310 19.71456 
4 7.74808 � AccessBPop2 0.5272 19.87342 
5 6.20752 � AccessH1Pop 0.5249 19.97282 
6 7.69036 � AccessTWEm2 0.5234 20.03564 
7 6.23680 � AccessH2Pop 0.5228 20.05838 
8 7.72936 � AccessTWSC2 0.5220 20.09466 
9 7.95846 � AccessBEm2 0.5207 20.14991 

10 7.99978 � AccessBSC2 0.5200 20.17735 
11 7.07078 � AccessH1Em 0.5010 20.97579 
12 4.20759 � JOBS_HHm2 + 4.68718 � AccessH2Em 0.5317 19.68582 
13 7.09590 � AccessH1SC 0.4978 21.11049 
14 7.12104 � AccessH2SC 0.4953 21.21720 
15 0.06812 � Dailybus 0.4865 21.58746 
16 0.79084 � SFDUDensity2 0.4761 22.02462 
17 0.00491 � WDailybus + 0.00027380 � AvgParcelSize 0.4950 21.22858 
18 0.17142 � TotalPopDensity2 + 0.00029256 � AvgParcelSFSize 0.4795 21.87810 
19 9.45346 � AvgEntropy 0.4099 24.80696 

Notes: 
* Models with the adjusted R2’s that are less than 0.4 are not included. 
** Variable descriptions in alphabetic order: 
AccessBEm2: transit best skim accessibility weighted by total employment. 
AccessBPop2: transit best skim accessibility weighted by population opportunities. 
AccessBSC2: transit best skim accessibility weighted by service plus commercial employment. 
AccessH1Em: highway Time1 accessibility weighted by total employment. 
AccessH1Pop: highway Time1 accessibility weighted by total population. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment 
AccessH2Em: highway Time2 accessibility weighted by total employment 
AccessH2Pop: highway Time2 accessibility weighted by total population. 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWEm2: transit walk skim accessibility weighted by total employment. 
AccessTWPop2: transit walk skim accessibility weighted by population opportunities. 
AccessTWSC2: transit walk skim accessibility weighted by service plus commercial employment. 
AvgEntropy: land use mix in buffer area of a census tract. 
AvgParcelSFSize: average parcel size of single-family properties in buffer area of a tract. 
AvgParcelSize: average parcel size of single- and multi-family properties in buffer area of a tract. 
Dailybus: unweighted average number of bus runs per stop in a tract. 
JOBS_HH2: job house balance. 
JOBS_HHm2: modified jobs-housing balance in buffer area of a census tract. 
ServiceArea%: percentage of tract area served by transit based on ¼-mile buffers around. 
SFPopDensity2: single-family population density in buffer area of a tract. 
SFDUDensity2: single-family dwelling unit density in buffer area of a tract. 
TotalPopDensity2: total population density in buffer area of a census tract. 
WDailybus: average number of bus runs per stop in a tract weighted by service area. 
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Table 6-5. Transit Production Trip Models for Miami-Dade (Buffer Method)* 
Order Model** Adjusted R2 MSE 

1 2.78918 � AccessTWPop3 + 2.23290 � AvgEntropy3 0.7349 1.56248 
2 4.05242 � AccessBPop3 + 0.01181 � Dailybus 0.6867 1.84663 
3 1.78761 � AccessH1SC + 0.00156 � WDailybus 0.6657 1.97009 
4 2.83203 � AccessH1Em 0.6408 2.11708 
5 2.51575 � AccessH2Pop 0.6382 2.13253 
6 2.85733 � AccessH2SC 0.6379 2.13435 
7 2.83641 � AccessH2Em 0.6369 2.14007 
8 0.05051 � DECAY_POP 0.6165 2.26010 

Notes: 
* The list does not include the models with the adjusted R2‘s that are less than 0.6. 
** Variable descriptions in alphabetic order: 
AccessBPop3: transit best skim accessibility weighted by population opportunities. 
AccessH1Em: highway Time1 accessibility weighted by total employment. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment 
AccessH2Em: highway Time2 accessibility weighted by total employment 
AccessH2Pop: highway Time2 accessibility weighted by total population. 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWPop3: transit walk skim accessibility weighted by population opportunities. 
AvgEntropy3: land use mix in buffer area of a census tract. 
Dailybus: unweighted average number of bus runs per stop in a tract. 
DECAY_POP: percentage of service population. 
Wdailybus: average number of bus runs per stop in a tract weighted by service area. 

 
Table 6-6. Transit Attraction Trip Models for Miami-Dade (Buffer Method)* 

Order Model** Adjusted R2 MSE 
1 5.53718 � JOBS_HH3 + 0.04240 � Dailybus 0.5779 25.84608 
2 6.06660 � AccessTWPop3 + 0.00001618 � AvgValue 0.5508 27.50937 
3 6.60408 � AccessBPop3 + 0.00001505 � AvgSFValue 0.5448 27.87717 
4 9.13106 � AccessTWEm3 0.5041 30.36674 
5 9.18368 � AccessTWSC3 0.5036 30.39884 
6 9.49700 � AccessBSC3 0.5010 30.55620 
7 9.44338 � AccessBEm3 0.5009 30.56152 
8 7.31302 � AccessH1Pop 0.4934 31.02256 
9 7.30918 � AccessH2Pop 0.4862 31.46228 

10 0.00477 � WDailybus + 0.00041309 � AvgParcelSFSize 0.5139 29.76686 
11 5.75022 � JOBS_HHm3 + 0.00037010 � AvgParcelSize 0.5008 30.56641 
12 6.55752 � ServiceArea% 0.4598 33.08095 
13 15.83873 � Wth2Pop3 + 6.52689 � AccessH1Em 0.4975 30.76869 
14 17.46226 � Bth2Pop3 + 6.64814 � AccessH1SC 0.4952 30.90945 
15 8.15706 � AccessH2Em 0.4440 34.04829 
16 8.19789 � AccessH2SC 0.4422 34.15851 
17 2.86335 � SFDUDensity3 0.4264 35.12224 
18 0.83178 � SFPopDensity3 0.4171 35.69524 

Notes: 
*   The list does not include the models with the adjusted R2‘s that are less than 0.4. 
**   Variable descriptions in alphabetic order: 
AccessBEm3: transit best skim accessibility weighted by total employment. 
AccessBPop3: transit best skim accessibility weighted by population opportunities. 
AccessBSC3: transit best skim accessibility weighted by service plus commercial employment. 
AccessH1Em: highway Time1 accessibility weighted by total employment. 
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AccessH1Pop: highway Time1 accessibility weighted by total population. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment 
AccessH2Em: highway Time2 accessibility weighted by total employment 
AccessH2Pop: highway Time2 accessibility weighted by total population. 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWEm3: transit walk skim accessibility weighted by total employment. 
AccessTWPop3: transit walk skim accessibility weighted by population opportunities. 
AccessTWSC3: transit walk skim accessibility weighted by service plus commercial employment. 
AvgSFValue: average single-family housing value. 
AvgParcelSFSize: average parcel size of single-family properties in buffer area of a tract. 
AvgParcelSize: average parcel size of single- and multi-family properties in buffer area of a tract. 
AvgValue: average housing value. 
Bth2Pop3: transit best skim over highway Time2 accessibility weighted by population opportunities. 
Dailybus: unweighted average number of bus runs per stop in a tract. 
JOBS_HH3: job house balance. 
JOBS_HHm3: modified jobs-housing balance in buffer area of a census tract. 
ServiceArea%: percentage of tract area served by transit based on ¼-mile buffers around. 
SFDUDensity3: single-family dwelling unit density in buffer area of a tract. 
SFPopDensity3: single-family population density in buffer area of a tract. 
WDailybus: average number of bus runs per stop in a tract weighted by service area. 
Wth2Pop3: transit walk skim over highway Time2 accessibility weighted by population opportunities. 
 

Table 6-7. Transit Production Trip Models for Miami-Dade (Tract Method)* 
Order Model** Adjusted R2 MSE 

1 4.38241 � AccessTWPop4 0.8087 0.76548 
2 4.60293 � AccessTBPop4 + 0.00980 � Black 0.7985 0.80667 
3 3.76624 � AccessTWEm4 + 1.63266 � AvgEntropy4 0.7733 0.90719 
4 4.13504 � AccessTWSC4 + 0.15332 � AvgPChild 0.7679 0.92879 
5 6.32606 � AccessTBEm4 0.7278 1.08938 
6 4.69664 � AccessTBSC4 + 0.92305 � %HH0Child 0.7613 0.95529 
7 1.72310 � AccessH1SC + 3.05882 � MFDUNoAuto% 0.7539 0.98505 
8 1.74977 � AccessH2SC + 3.09875 � DUNoAuto% 0.7537 0.98574 
9 1.79217 � AccessH2Em + 3.21592 � SFDUNoAuto% 0.7529 0.98909 

10 1.10775 � ServiceArea% + 0.00161 � Dailybus 0.7301 1.08024 
11 0.01579 � Dailybus + 0.02637 � TotalDensity4 0.6503 1.39965 
12 0.97623 � AvgP0Child - 0.16558 � Avghdway 0.6618 1.35353 
13 0.94494�AvgWrkrChild-1.02232�Avghdway+0.03667�MFPopDensity4 0.6178 1.52956 

Notes: 
*  The list does not include the models with the adjusted R2‘s that are less than 0.6. 
**  Variable descriptions in alphabetic order: 
%HH0Child: percentage of households without children. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessH2Em: highway Time2 accessibility weighted by total employment. 
AccessTBEm4: transit best skim accessibility weighted by total employment. 
AccessTBPop4: transit best skim accessibility weighted by population opportunities. 
AccessTBSC4: transit best skim accessibility weighted by service plus commercial employment. 
AccessTWEm4: transit walk skim accessibility weighted by total employment. 
AccessTWPop4: transit walk skim accessibility weighted by population opportunities. 
AccessTWSC4: transit walk skim accessibility weighted by service plus commercial employment. 
AvgEntropy4: land use mix in a census tract. 
Avghdway: composite average daily headway in a tract. 
AvgP0Child: average number of persons in households without children. 
AvgPChild: average number of persons in households with children. 
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AvgWrkrChild: average number of workers in households with children. 
Black: percentage of black population in a census tract. 
Dailybus: unweighted average number of bus runs per stop in a tract. 
DUNoAuto%: percentage of households without auto. 
TotalDensity4: total residential property density in a census tract. 
MFDUNoAuto%: percentage of multi-family households without auto. 
MFPopDensity4: multi-family population density in a census tract. 
ServiceArea%: percentage of tract area served by transit in a census tract. 
SFDUNoAuto%: density of single-family households without auto in a census tract. 

 
Table 6-8. Transit Attraction Trip Models for Miami-Dade (Tract Method)* 

Order Model** Adjusted R2 MSE 
1 1.18955 � SFDUDensity4 + 4.99499 � JOBS_HH4 0.5838 17.39299 
2 5.86252 � ServiceArea% 0.5365 19.36766 
3 0.38240 � SFPopDensity4 + 4.46452 � AccessTWPop4 0.5706 17.94212 
4 7.79699 � AccessBPop4 0.5273 19.75343 
5 7.76121 � AccessTWEm4 0.5243 19.87962 
6 7.80060 � AccessTWSC4 0.5230 19.93177 
7 6.23331 � AccessH1Pop 0.5226 19.94784 
8 8.01836 � AccessBEm4 0.5203 20.04413 
9 1.13679 � AvgPChild4 0.5203 20.04562 

10 8.05977 � AccessBSC4 0.5199 20.06391 
11 6.25771 � AccessH2Pop 0.5197 20.07132 
12 0.06993 � Dailybus 0.5142 20.29973 
13 2.65693 � AvgWrkrChild4 0.5077 20.57177 
14 6.88689 � %HH0Child 0.4996 20.91250 
15 4.63213 � JOBS_HHm4 + 4.17396 � AccessH1Em 0.5295 19.65952 
16 7.04111 � AccessH1SC 0.4810 21.68659 
17 7.02991 � AccessH2Em 0.4804 21.71401 
18 1.11579 � AvgAuto0Child4 + 0.00428 � WDailybus 0.5353 19.41892 
19 7.05800 � AccessH2SC 0.4774 21.83842 

Notes: 
*   The list does not include the models obtained after the 19th model. 
**   Variable descriptions in alphabetic order: 
%HH0Child: percentage of households without children. 
AccessBEm4: transit best skim accessibility weighted by total employment. 
AccessBPop4: transit best skim accessibility weighted by population opportunities. 
AccessBSC4: transit best skim accessibility weighted by service plus commercial employment. 
AccessH1Em: highway Time1 accessibility weighted by total employment. 
AccessH1Pop: highway Time1 accessibility weighted by total population. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment 
AccessH2Em: highway Time2 accessibility weighted by total employment 
AccessH2Pop: highway Time2 accessibility weighted by total population. 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWEm4: transit walk skim accessibility weighted by total employment. 
AccessTWPop4: transit walk skim accessibility weighted by population opportunities. 
AccessTWSC4: transit walk skim accessibility weighted by service plus commercial employment. 
AvgAuto0Child4: average number of cars owned by households without children. 
AvgPChild4: average number of persons in households with children. 
AvgWrkrChild4: average number of workers in households with children. 
Dailybus: unweighted average number of bus runs per stop in a tract. 
JOBS_HH4: job house balance. 
JOBS_HHm4: modified jobs-housing balance in a census tract. 
ServiceArea%: percentage of tract area served by transit. 
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SFDUDensity4: single-family dwelling unit density in a tract. 
SFPopDensity4: single-family population density in a tract. 
WDailybus: average number of bus runs per stop in a tract weighted by service area. 
 
From the results, it may be observed that regardless of which method was used to compile the 
variables for the Miami-Dade models, accessibility variables, especially those weighted by 
population, were always an important factor for both production and attraction transit trips.  
Models with a single accessibility variable explained more than 50%, some even up to 70%, of 
variation in the response data.  The production models calibrated using the census tract level data 
(compiled with Tract Method), however, showed that accessibility variables weighted by total 
and service/commercial employment to be more significant.  These production models may be 
misleading since the data were not detail enough as those using the Land Use Method, Buffer 
Method, or Property Method. 

 
DECAY_POP, which is the transit service population in a tract as a percentage of the total tract 
population, was significant in three out of the four models, which are those based on data 
compiled with the GIS Land Use Method, Property Method, and Buffer Method.  A similar and 
more crude measure of pedestrian accessibility, the percentage of transit service area in a tract 
defined by a ¼-mile buffer also appeared in three models: those based on data compiled using 
the GIS Land Use Method, Property Method, and Tract Method.  It is interesting to note that 
while the Buffer Method is the most popular method in transit demand analysis, ServiceArea% 
did not appear in the related models.   
 
ServiceArea% is much easier to calculate than most of the accessibility and LOS variables, 
including DECAY_POP.  Since it performed nearly as well as DECAY_POP for the zero-
intercept linear models calibrated with the data compiled by the GIS Land Use Method and 
Property Method, one may question the need for DECAY_POP, which requires much more effort 
to compute.  In fact, the correlation coefficient between these two variables is around 0.7.   

 
Figure 6-1 illustrates the relationship between DECAY_POP and ServiceArea% by plotting the 
two values for each census tract included in the study, sorted by ServiceArea%.  It may be seen 
that even when service area percentage reaches 100 percent for some tracts, the distance decayed 
transit service population percentage is much lower, remaining below 50 percent in most cases.   
In fact, service area coverage reaches 95% to 100% for nearly 40% of the census tracts in the 
study.  For these tracts, ServiceArea% is no longer sensitive to the differences in transit use.  
Table 6.9 shows the adjusted R2’s of regression models before and after eliminating nearly 40% 
of the sampled tracts with more than 95% service coverage.  The results showed a relatively 
large drop in the adjusted R2‘s for the ServiceArea% models.  Table 6-9 suggests that 
ServiceArea% may not be a good indicator to model transit use for areas with lower transit 
service coverage.  Consequently, it is preferable to implement DECAY_POP to estimate transit 
use. 
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Figure 6-1. Distance decayed Transit Service Population and Percentage of Service Area 

in a Tract 
 

Table 6-9. Adjusted R2’s for the DECAY_POP_ and ServiceArea% Models 
GIS Land Use Method Property Method Buffer Method  Before After Before After Before After 

DECAY_POP_ 0.6662 0.5408 0.6456 0.5256 0.6165 0.4834 
ServiceArea% 0.6330 0.4625 0.6459 0.5049 0.5750 0.4032 

 
Among the variables other than accessibility variables that were included in the pool of candidate 
models, Dailybus, a transit LOS variable representing the average number of bus runs per stop in 
a tract, appeared to be a better indicator for transit use since the variable alone explained nearly 
60% of the variation for transit production models.  Consequently, since accessibility-based 
variables are relatively more complicated to calculate, Dailybus may be utilized to quantify 
transit use.  This also implies that data compiled using different methods as described in Chapter 
4 will produce similar results, since the majority of the special characteristics based on smaller 
spatial units (e.g., TAZs) are lost in the process of aggregation to the tract level.  An analysis of 
correlation between the Dailybus variable and other headway variables revealed that they were 
strongly correlated.  This is expected since the shorter the headway the higher number of daily 
bus runs for a given service period. 
 
The models explained more variations in transit use at the production end than at the attraction 
end, probably due to the fact that data at the production sides were more accurate and frequently 
updated and, in comparison, employment data were less reliable.  Consequently, models for 
transit production trips could be better estimated. 
 
For attraction models, all of the four methods revealed that ServiceArea% was a critical factor 
and the variable alone could explain nearly 50% of the variation in the data.  Although the jobs-
housing balance variable was significant, most of the variations in the data had been explained 
by other variable(s) included in the same model.  Therefore, the partial R2 for this variable was 
much lower. 
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6.3 Regression Results for Broward and Palm Beach Counties 
 
The same model selection procedure was applied to examine the Broward and Palm Beach data.  
As mentioned in Sections 4-7 and 4-8, data were compiled using the Buffer Method and the 
Tract Method for Broward County and the Tract Method for Palm Beach County.  Tables 6-10 to 
6-15 show the resulting candidate models for these two counties for transit production and 
attraction trips.   The results suggested the following: 
 

1. Although accessibility variables were consistently significant for the production trip 
models estimated for both counties, the models’ adjusted R2’s were relatively lower than 
those for Miami-Dade models.  One of the probably causes is that a small number of 
samples were used to calibrate the transit impedance functions for both counties (i.e., 64 
for Broward County and 36 for Palm Beach County).  On the other hand, highway 
impedance functions for Broward and Palm Beach counties are calibrated using 1,628 
and 1,618 samples, respectively.  The ability to make meaningful interpretations of the 
models based on the impedance functions calibrated from a relatively small number of 
samples may be questionable. 

 
2. Different from the Miami-Dade models, transit levels of service and demographic 

variables did not appear to be relevant to transit production trips. 
 

3. Lower than expected adjusted R2’s were obtained for the Broward and Palm Beach transit 
attraction models.  As a result, attraction models were inconclusive. 

 
Table 6-10. Transit Production Trip Models for Broward (Buffer Method)* 

Order Model** Adjusted R2 MSE 
1 7.58103 � AccessTWPop3 0.5644 6.58990 
2 6.86415 � Wth2Pop3 0.5543 6.74322 
3 6.47177 � Wth1Em3 0.5504 6.80128 
4 6.45828 � Wth2Em3 0.5504 6.80191 
5 6.38996 � Wth1SC3 0.5499 6.81001 
6 6.37684 � Wth2SC3 0.5498 6.81091 
7 7.33734 � AccessTWSC3 0.5426 6.91955 
8 7.47374 � AccessTWEm3 0.5425 6.92159 
9 7.49584 � AccessBSC3 0.5341 7.04771 

10 7.57539 � AccessBEm3 0.5333 7.06003 
11 5.52147 � Bth1Pop3 0.5285 7.13327 
12 5.43488 � Bth1SC3 0.5252 7.18233 
13 5.42692 � Bth2SC3 0.5252 7.18293 
14 5.50305 � Bth1Em3 0.5246 7.19199 
15 5.49478 � Bth2Em3 0.5246 7.19250 
16 4.36714 � AccessH1SC 0.5077 7.44824 
17 4.39861 � AccessH2SC 0.5069 7.45978 

Notes: 
*  The list does not include the models with the adjusted R2‘s that are less than 0.5. 
** Variable descriptions in alphabetic order: 
AccessBEm3: transit best skim accessibility weighted by total employment. 
AccessBSC3: transit best skim accessibility weighted by service plus commercial employment. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment. 
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AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWEm3: transit walk skim accessibility weighted by total employment. 
AccessTWPop3: transit walk skim accessibility weighted by population opportunities. 
AccessTWSC3: transit walk skim accessibility weighted by service plus commercial employment. 
Bth1Em3: transit best skim over highway Time1 accessibility weighted by total employment. 
Bth1Pop3: transit best skim over highway Time1 accessibility weighted by population opportunities. 
Bth1SC3: transit best skim over highway Time1 accessibility weighted by social plus commercial 

employment. 
Bth2Em3: transit best skim over highway Time2 accessibility weighted by total employment. 
Bth2SC3: transit best skim over highway Time2 accessibility weighted by social plus commercial 

employment. 
Wth2Pop3: transit walk skim over highway Time2 accessibility weighted by population opportunities. 
Wth1Em3: transit walk skim over highway Time1 accessibility weighted by total employment. 
Wth1SC3: transit walk skim over highway Time1 accessibility weighted by service plus commercial 

employment. 
Wth2Em3: transit walk skim over highway Time2 accessibility weighted by total employment. 
Wth2SC3: transit walk skim over highway Time2 accessibility weighted by service plus commercial 

employment. 
 

Table 6-11. Transit Attraction Trip Models for Broward (Buffer Method)* 
Order Model** Adjusted R2 MSE 

1 31.82185 � JOBS_HHm3 0.3796 382.52197 
2 26.58495 � JOBS_HH3 0.3749 385.41922 
3 1.44683 � TotalPopDensity3 0.3174 420.87990 

Notes: 
*  The list does not include the models with the adjusted R2‘s that are less than 0.3. 
** Variable descriptions in alphabetic order: 
JOBS_HH3: job house balance. 
JOBS_HHm3: modified jobs-housing balance in buffer area of a census tract. 
TotalPopDensity3: total population density in buffer area of a census tract. 
 

Table 6-12. Transit Production Trip Models for Broward (Tract Method)* 
Order Model** Adjusted R2 MSE 

1 6.64969 � AccessTWPop4 0.5521 4.60767 
2 6.69978 � AccessTWEm4 0.5485 4.64541 
3 6.57190 � AccessTWSC4 0.5474 4.65656 
4 6.24768 � AccessBPop4 0.5425 4.70712 
5 6.79136 � AccessBEm4 0.5408 4.72434 
6 6.71358 � AccessBSC4 0.5404 4.72845 
7 5.54739 � Wth1Em4 0.5249 4.88822 
8 5.53406 � Wth2Em4 0.5245 4.89190 
9 5.47016 � Wth1SC4 0.5227 4.91107 

10 5.45752 � Wth2SC4 0.5223 4.91458 
11 5.79719 � Wth1Pop4 0.5143 4.99693 
12 4.66474 � Bth1Pop4 0.4977 5.16795 
13 4.65256 � Bth2Pop4 0.4970 5.17456 
14 4.66667 � Bth1Em4 0.4952 5.19319 
15 4.65838 � Bth2Em4 0.4949 5.19608 
16 4.60368 � Bth1SC4 0.4944 5.20143 
17 4.59581 � Bth2SC4 0.4942 5.20423 
18 3.55934 � AccessH2SC 0.4650 5.50371 
19 3.52313 � AccessH1SC 0.4635 5.51928 

Notes: 
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*  The list does not include the models obtained after the 19th model. 
**  Variable descriptions in alphabetic order: 
AccessBEm4: transit best skim accessibility weighted by total employment. 
AccessBPop4: transit best skim accessibility weighted by population opportunities. 
AccessBSC4: transit best skim accessibility weighted by service plus commercial employment. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWEm4: transit walk skim accessibility weighted by total employment. 
AccessTWPop4: transit walk skim accessibility weighted by population opportunities. 
AccessTWSC4: transit walk skim accessibility weighted by service plus commercial employment. 
Bth1Em4: transit best skim over highway Time1 accessibility weighted by total employment. 
Bth1Pop4: transit best skim over highway Time1 accessibility weighted by population opportunities. 
Bth1SC4: transit best skim over highway Time1 accessibility weighted by social plus commercial 

employment. 
Bth2Em4: transit best skim over highway Time2 accessibility weighted by total employment. 
Bth2Pop4: transit best skim over highway Time2 accessibility weighted by population opportunities. 
Bth2SC4: transit best skim over highway Time2 accessibility weighted by social plus commercial 

employment. 
ForeignBorn: percentage of population that are immigrants in a tract. 
ServiceArea%: percentage of tract area served by transit. 
Wth1Em4: transit walk skim over highway Time1 accessibility weighted by total employment. 
Wth1Pop4: transit walk skim over highway Time1 accessibility weighted by population opportunities. 
Wth1SC4: transit walk skim over highway Time1 accessibility weighted by service plus commercial 

employment. 
Wth2Em4: transit walk skim over highway Time2 accessibility weighted by total employment. 
Wth2SC4: transit walk skim over highway Time2 accessibility weighted by service plus commercial 

employment. 
 

Table 6-13. Transit Attraction Trip Models for Broward (Buffer Method)* 
Order Model** Adjusted R2 MSE 

1 1.15340 � TotalPopDensity4 0.3825 176.26305 
2 21.05298�JOBS_HH4+21.26576�AccessTWSC4-4.64754�AvgAuto0Child 0.4324 162.01245 
3 18.67696�Wth2SC4+17.96289�JOBS_HHm4-3.81654�AvgAuto0Child 0.4126 167.66791 
4 23.19681 � Wth1SC4 0.3391 188.63588 
5 23.35029 � Wth2Em4 0.3371 189.21638 
6 23.39105 � Wth1Em4 0.3369 189.25673 
7 27.22611 � AccessTWEm4 0.3283 191.72787 
8 24.31474 � Wth1Pop4 0.3280 191.80408 
9 24.25466 � Wth2Pop4 0.3277 191.88477 

10 26.53106 � AccessTWPop4 0.3195 194.24378 
11 13.77653 � AccessH2Pop 0.3123 196.28119 
12 13.60269 � AccessH1Pop 0.3118 196.42679 
13 15.23312 � AccessH1SC 0.3097 197.02841 
14 15.34730 � AccessH2SC 0.3090 197.22229 

Notes: 
*  The list does not include the models with the adjusted R2‘s that are less than 0.3. 
** Variable descriptions in alphabetic order: 
AccessH1Pop: highway Time1 accessibility weighted by total population. 
AccessH1SC: highway Time1 accessibility weighted by service plus commercial employment 
AccessH2Pop: highway Time2 accessibility weighted by total population. 
AccessH2SC: highway Time2 accessibility weighted by service plus commercial employment. 
AccessTWEm4: transit walk skim accessibility weighted by total employment. 
AccessTWPop4: transit walk skim accessibility weighted by population opportunities. 
AccessTWSC4: transit walk skim accessibility weighted by service plus commercial employment. 
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AvgAuto0Child: average number of cars owned by households without children. 
JOBS_HH4: job house balance. 
JOBS_HHm4: modified jobs-housing balance in a census tract. 
TotalPopDensity4: total population density in a census tract. 
Wth1Em4: transit walk skim over highway Time1 accessibility weighted by total employment. 
Wth1Pop4: transit walk skim over highway Time1 accessibility weighted by population opportunities. 
Wth1SC4: transit walk skim over highway Time1 accessibility weighted by service plus commercial 

employment. 
Wth2Em4: transit walk skim over highway Time2 accessibility weighted by total employment. 
Wth2Pop4: transit walk skim over highway Time2 accessibility weighted by population opportunities. 
Wth2SC4: transit walk skim over highway Time2 accessibility weighted by service plus commercial 

employment. 
 

Table 6-14. Transit Production Trip Models for Palm Beach (Tract Method)* 
Order Model** Adjusted R2 MSE 

1 24.48368 � AccessTWEm4 0.6797 2.33270 
2 25.38213 � AccessTWSC4 0.6737 2.37654 
3 11.24775 � AccessTWPop4 0.5382 3.36306 
4 7.65490 � Wth1SC4 - 0.80089 � AvgAuto0Child 0.5421 3.33468 
5 7.44418 � Wth2SC4 - 0.94698 � AvgAuto0Child 0.5336 3.39645 
6 6.57754 � Wth1Em4 - 1.41710 � White 0.5231 3.47291 
7 4.38788 � Wth2Em4 0.4679 3.87536 
8 5.26366 � Bth1Em4 0.4552 3.96804 
9 5.27067 � Bth2Em4 0.4547 3.97149 

10 5.13728 � Bth1SC4 0.4530 3.98367 
11 5.14425 � Bth2SC4 0.4526 3.98702 
12 3.80155 � Bth1Pop4 + 9.47064 � AccessBEm4 0.4717 3.84724 
13 3.85980 � Bth2Pop4 + 9.36043 � AccessBSC4 0.4696 3.86325 
14 3.91680 � Wth1Pop4 0.4294 4.15548 
15 8.17180 � AccessBPop4 + 0.12668 � TotalDensity4 0.4031 4.34692 

Notes: 
*  The list does not include the models with the adjusted R2‘s that are less than 0.3. 
** Variable descriptions in ascending order: 
AccessBEm4: transit best skim accessibility weighted by total employment. 
AccessBPop4: transit best skim accessibility weighted by population opportunities. 
AccessBSC4: transit best skim accessibility weighted by service plus commercial employment. 
AccessTWEm4: transit walk skim accessibility weighted by total employment. 
AccessTWPop4: transit walk skim accessibility weighted by population opportunities. 
AccessTWSC4: transit walk skim accessibility weighted by service plus commercial employment. 
AvgAuto0Child: average number of cars owned by households without children. 
Bth1Em4: transit best skim over highway Time1 accessibility weighted by total employment. 
Bth1Pop4: transit best skim over highway Time1 accessibility weighted by population opportunities. 
Bth1SC4: transit best skim over highway Time1 accessibility weighted by social plus commercial 

employment. 
Bth2Em4: transit best skim over highway Time2 accessibility weighted by total employment. 
Bth2Pop4: transit best skim over highway Time2 accessibility weighted by population opportunities. 
Bth2SC4: transit best skim over highway Time2 accessibility weighted by social plus commercial 

employment. 
TotalDensity4: total employment plus population density in a census tract. 
White: percentage of population that are White in a tract. 
Wth1Em4: transit walk skim over highway Time1 accessibility weighted by total employment. 
Wth1Pop4: transit walk skim over highway Time1 accessibility weighted by population opportunities. 
Wth1SC4: transit walk skim over highway Time1 accessibility weighted by service plus commercial 

employment. 
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Wth2Em4: transit walk skim over highway Time2 accessibility weighted by total employment. 
Wth2SC4: transit walk skim over highway Time2 accessibility weighted by service plus commercial 

employment. 
 

Table 6-15. Transit Attraction Trip Model for Palm Beach (Tract Method)* 
Order Model** Adjusted R2 MSE 

1 11.10076 � JOBS_HH4 0.2762 104.43712 
Notes: 
*  The list does not include the models with the adjusted R2‘s that are less than 0.3. 
**  Variable description: 
JOBS_HH4: job house balance. 
 
6.4 Regressions with Demand Variables 
 
The regression results described in the proceeding three subsections showed that only supply 
variables, such as transit accessibility, total number of bus runs, and percentage of area of a 
census tract covered by bus stop buffer zones, were significant and consistently included in the 
possible models that were identified.  It is well recognized that transit supply and demand are 
interdependent, i.e., supply is determined by demand and demand is stimulated by supply.  As 
supply variables are much easier to measure than demand variables, it is not surprising that 
supply variables are the leading indicators of transit use. 
 
While supply variables may be employed to determine the mode share where transit services 
have been established, they do not help predict mode share where transit services are being 
considered in the future.  For future year forecasts, planning of transit projects will require the 
determination of demand.  As a result, additional regressions are performed to further explore the 
relationship between transit use and probable influential factors by excluding the dominant 
transit supply variables.  The data set was first categorized into three groups of low, medium, and 
high accessibility, each with nearly equal number of observations, i.e., around 30.  The purpose 
of data regrouping was to utilize transit accessibility as a control variable to examine the 
variation of demand variables in each of the three new data subsets.  Accessibility was chosen as 
the control variable because it had the highest R2 thus the best explanatory power.  The following 
sections will describe the results of the regression analyses for each of the four data aggregation 
methods, namely the GIS Land Use Method, the Property Method, the Buffer Method, and the 
Tract Method. 
 
6.4.1 Data Compiled Using GIS Land Use Method 
 
Tables 6-16, 6-17, and 6-18 respectively list the regression models with adjusted R2’s greater 
than 0.5 for the low, medium, and high accessibility groups.  These models were produced by the 
procedure described in Section 6 with land use/socio-economic/demographic data compiled 
using GIS land use method, that is data compiled for transit stop buffer areas in a tract assuming 
population and employment to be evenly distributed in the same land uses.  The AccessTWPop1 
variable, i.e., transit walk skim accessibility weighted by population opportunities, was used to 
classify the data into three accessibility groups.  The accessibility indices for the low, medium, 
and high accessibility groups ranged from 0.0441 to 0.2413, 0.2440 to 0.3990, and 0.4228 to 
0.8784, respectively.  The results in Tables 6-16 to 6-18 show that the SFDUDensity1 variable, 
i.e., single-family dwelling unit (DU) density in the buffer area of a tract, appears to be a 
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significantly factor on transit use at all accessibility levels.  Additionally, the effect of single-
family dwelling unit density on transit use increases with the accessibility level as indicated by 
the increase in the magnitude of the coefficients of the variable in the models. 
 

Table 6-16. Models for Miami-Dade (GIS Land Use Method, Low Accessibility) 
Order Model* Adjusted R2 MSE 

1 0.20772 � SFDUDensity1 0.5340 0.90874 
2 0.05316 � TotalDensity1 0.4847 1.00481 

*   Variable descriptions in alphabetic order: 
SFDUDensity1: single-family dwelling unit density in the buffer area of a census tract. 
TotalDensity1: total employment plus population density. 
 

Table 6-17. Models for Miami-Dade (GIS Land Use Method, Medium Accessibility) 
Order Model* Adjusted R2 MSE 

1 2.36922 � AvgEntropy1 + 0.00014312 � AvgParcelMFSize1 0.7487 1.16151 
2 0.04498 � DECAY_POP 0.6119 1.79371 
3 0.00021529 � AvgParcelSize1 0.6063 1.81957 
4 0.00019464 � SFPopDensity1 0.5736 1.97075 
5 0.29410 � SFDUDensity1 0.5627 2.02112 
6 0.02187 � MFPopDensity1 0.5436 2.10957 
7 0.05884 � TotalDensity1 0.5078 2.27472 

* Variable descriptions in alphabetic order: 
AvgEntropy1: land use mix in the buffer area of a census tract. 
AvgParcelMFSize1: average parcel size for multi-family dwelling units in the buffer area of a census tract. 
AvgParcelSize1: average parcel size for residential properties in the buffer area of a census tract. 
DECAY_POP: percentage of service population. 
MFPopDensity1: multi-family population density in the buffer area of a census tract. 
SFDUDensity1: single-family dwelling unit density in buffer area of a census tract. 
SFPopDensity1: single family population density in the buffer area of a census tract. 
TotalDensity1: total employment plus population density. 
 

Table 6-18. Models for Miami-Dade (GIS Land Use Method, High Accessibility) 
Order Model Adjusted R2 MSE 

1 5.33338 � AvgEntropy1 0.8515 1.21974 
2 0.12239 � SFPopDensity1 0.8354 1.35194 
3 0.05830 � DECAY_POP 0.8108 1.55404 
4 0.42001 � SFDUDensity1  0.8098 1.56172 
5 0.00020751 � AvgParcelSize1 + 0.03109 � TotalPopDensity1 0.8403 1.31122 
6 0.00034931 � AvgParcelSFSize1  0.8011 1.63323 
7 0.04374 � MFPopDensity1 0.7975 1.66259 
8 0.11160 � MFDUDensity1   0.7352 2.17463 
9 0.00018959 � AvgParcelMFSize1 + 0.08546 � TotalDUDenity1 0.7794 1.81142 

10 0.00002452 � AvgMFValue  0.6812 2.61798 
11 5.19856 � JOBS_HHm1 0.6725 2.68920 
12 0.00002703 � AvgValue  0.6617 2.77778 
13 0.00002871 � AvgSFValue  0.6586 2.80372 
14 2.35597 � JOBS_HH1 + 0.04014 � TotalDensity1 0.6930 2.52128 

* Variable descriptions in alphabetic order: 
AvgEntropy1: land use mix in the buffer area of a census tract. 
AvgMFValue: average multi-family property value in the buffer area of a census tract. 
AvgParcelMFSize1: average parcel size for multi-families in the buffer area of a census tract. 



 124 
 

 

AvgParcelSFSize1: average parcel size for single families in the buffer area of a census tract. 
AvgParcelSize1: average parcel size for residential properties in the buffer area of a census tract. 
AvgSFValue: average value for single families in the buffer area of a census tract. 
AvgValue: average value for residential properties in the buffer area of a census tract. 
DECAY_POP: percentage of service population. 
JOBS_HH1: job house balance. 
JOBS_HHm1: modified jobs-housing balance in buffer area of a census tract. 
MFDUDensity1: multi-family dwelling unit density in buffer area of a tract. 
MFPopDensity1: multi-family population density in buffer area of a tract. 
SFDUDensity1: single-family dwelling unit density in buffer area of a census tract. 
SFPopDensity1: single-family population density in buffer area of a tract. 
TotalDensity1: total employment plus population density. 
TotalDUDenity1: total single- plus multi-family dwelling unit density in buffer area of a census tract. 
TotalPopDensity1: total single- plus multi-family population density in buffer area of a census tract. 
 
Figure 6-2 illustrates the relationships between single-family DU density and transit productions 
by assuming zero model intercept as previously described.  When the model intercept is fixed at 
zero, the effects of single-family DU density on transit use at different accessibility levels can be 
directly estimated by comparing the coefficients from the models.  When non-zero intercept is 
specified, however, the variable appears to have different effects on transit productions, i.e., it is 
negatively related to transit production at the high accessibility level while positively related at 
the other levels (see Figure 6-3).  Note that the variable itself has a positive relationship with 
transit productions for both no-intercept and intercept models when the data are not grouped by 
accessibility level as shown in Figure 6-4. 

 
Figure 6-2. Through Origin Relationships between SFDUDensity1 and Transit 

Production by Transit Accessibility Level (GIS Land Use Method) 
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Figure 6-3. Non-Zero Intercept Relationships between SFDUDensity1 and Transit 
Production by Transit Accessibility Level (GIS Land Use Method) 

 

Figure 6-4. Intercept and No-Intercept SFDUDensity1 Models for Transit Productions 
(GIS Land Use Method) 
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Figures 6-5 and 6-6 illustrate the zero-intercept and intercept models at different accessibility 
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regardless of the accessibility level.  Similar positive relationship can be observed when the data 
are not grouped according to the accessibility levels (see Figure 6-7). 
 

Figure 6-5. Through Origin Relationships between TotalDensity1 and Transit Production 
by Transit Accessibility Level (GIS Land Use Method) 

 

Figure 6-6. Non-Zero Intercept Relationships between TotalDensity1 and Transit 
Production by Transit Accessibility Level (GIS Land Use Method) 
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Figure 6-7. Intercept and No-Intercept TotalDensity1 Models for Transit Productions 
(GIS Land Use Method) 

 
6.4.2 Data Compiled Using Property Method 
 
Tables 6-19, 6-20, and 6-21 respectively list the regression models with adjusted R2’s that are 
greater than 0.5 for the low, medium, and high accessibility groups.  The data were compiled by 
the Property Method procedure described in Section 6.  The difference between Methods 1 and 2 
is that population is distributed based on property information while employment is assumed to 
be evenly distributed in the same land uses.  The AccessTWPop2 variable, i.e., the transit walk 
skim accessibility weighted by population, was used to classify the data into three accessibility 
groups.  The accessibility indices for the low, medium, and high accessibility groups range from 
0.0425 to 0.2406, 0.2413 to 0.3931, and 0.4229 to 0.8870, respectively. 
 

Table 6-19. Models for Miami-Dade (Property Method, Low Accessibility) 
Order Model Adjusted R2 MSE 

1 2.80975 � AvgEntropy2 0.6491 0.63998 
2 0.05667 � TotalDensity2 0.5712 0.78193 
3 0.02796 � MFDUDensity2 + 0.12393 � SFDUDensity2 0.6218 0.68968 
4 0.00007318 � AvgParcelSize2 + 0.02999 � TotalDUDenity2 0.5770 0.77138 

* Variable descriptions in alphabetic order: 
AvgEntropy2: land use mix in the buffer area of a census tract. 
AvgParcelSize2: average parcel size for residential properties in the buffer area of a census tract. 
MFDUDensity2: multi-family dwelling unit density in buffer area of a tract. 
SFDUDensity2: single-family dwelling unit density in buffer area of a census tract. 
TotalDensity2: total employment plus population density. 
TotalDUDenity2: total single- plus multi-family dwelling unit density in buffer area of a census tract. 
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Table 6-20. Models for Miami-Dade (Property Method, Medium Accessibility) 
Order Model Adjusted R2 MSE 

1 4.96075 � AvgEntropy2 0.6920 1.99476 
2 0.00021369 � AvgParcelMFSize2 + 0.03501 � TotalDensity2 0.7189 1.82029 
3 0.34974 � SFDUDensity2 0.6368 2.35228 
4 0.05269 � DECAY_POP 0.6299 2.39670 
5 0.00026489 � AvgParcelSize2 0.6172 2.47889 
6 0.00023809 � AvgParceSFlSize2 0.5808 2.71469 

* Variable descriptions in alphabetic order: 
AvgEntropy2: land use mix in the buffer area of a census tract. 
AvgParcelMFSize2: average parcel size for multi-families in the buffer area of a census tract. 
AvgParcelSFSize2: average parcel size for single-families in the buffer area of a census tract. 
AvgParcelSize2: average parcel size for residential properties in the buffer area of a census tract. 
DECAY_POP: percentage of service population. 
SFDUDensity2: single-family dwelling unit density in buffer area of a census tract. 
TotalDensity2: total employment plus population density. 
 

Table 6-21. Models for Miami-Dade (Property Method, High Accessibility) 
Order Model Adjusted R2 MSE 

1 0.00039897 � AvgParceSFlSize2 0.7924 2.24814 
2 0.00039490 � AvgParcelSize2 0.7911 2.26113 
3 5.88032 � AvgEntropy2 0.7824 2.35575 
4 0.47025 � SFDUDensity2 0.7683 2.50849 
5 0.06428 � DECAY_POP 0.7448 2.76254 
6 0.00034835 � AvgParceMFlSize2 0.7137 3.09966 
7 0.12263 � MFDUDensity2 0.6705 3.56763 
8 0.00002778 � AvgMFValue 0.6621 3.65811 
9 0.00003274 � AvgSFValue 0.6492 3.79762 

10 0.00003073 � AvgValue 0.6480 3.81070 
11 5.75953 � JOBS_HHm2 0.6238 4.07327 
12 0.12776 � TotalDensity2 + 0.23175 � SFPopDensity2 0.7051 3.19270 

* Variable descriptions in alphabetic order: 
AvgEntropy2: land use mix in the buffer area of a census tract. 
AvgMFValue: average multi-family property value in the buffer area of a census tract. 
AvgParcelMFSize2: average parcel size for multi-families in the buffer area of a census tract. 
AvgParcelSFSize2: average parcel size for single families in the buffer area of a census tract. 
AvgParcelSize2: average parcel size for residential properties in the buffer area of a census tract. 
AvgSFValue: average value for single families in the buffer area of a census tract. 
AvgValue: average value for residential properties in the buffer area of a census tract. 
DECAY_POP: percentage of service population. 
JOBS_HHm2: modified jobs-housing balance in buffer area of a census tract. 
MFDUDensity2: multi-family dwelling unit density in buffer area of a tract. 
SFDUDensity2: single-family dwelling unit density in buffer area of a census tract. 
SFPopDensity2: single-family population density in buffer area of a tract. 
TotalDensity2: total employment plus population density. 
 
The results from Tables 6-19 to 6-21 identify the following five variables as possible influential 
factors on transit use at various accessibility levels: 
 
AvgEntropy - Average entropy (a land use mix measure) 
TotalDensity - Total employment plus population density 
SFDUDensity - Single-family dwelling units density 
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AvgParcelSize - Average single-family plus multi-family parcel size 
AvgParcelSFSize - Average single-family parcel size 
 
The AvgEntropy and TotalDensity variables were further examined to verify their effects on 
transit productions at different accessibility levels.  Figure 6-8 illustrates the no-intercept models 
for transit productions when AvgEntropy was the only explanatory variable included in the 
model.  As expected, the effect of AvgEntropy on transit use increases with transit accessibility.  
As illustrated in Figure 6-9, the similar ascending pattern was also observed at all accessibility 
levels when non-zero intercept was specified.  For ungrouped data, the no-intercept and intercept 
models again revealed similar ascending pattern between AvgEntropy and transit production (see 
Figure 6-10). 
 

Figure 6-8. Through Origin Relationships between AvgEntropy and Transit Production 
by Transit Accessibility Level (Property Method) 
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Figure 6-9. Non-Zero Intercept Relationships between AvgEntropy and Transit 
Production by Transit Accessibility Level (Property Method) 

 

Figure 6-10. Intercept and No-Intercept AvgEntropy Models for Transit Production 
(Property Method) 
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transit productions at the low and high accessibility levels when non-zero intercept is specified 
since the model trend lines nearly parallel the horizontal axis.  For ungrouped data, the no-
intercept and intercept models again revealed similar ascending pattern between TotalDensity 
and transit production (see Figure 6-13). 
 

Figure 6-11. Through Origin Relationships between TotalDensity and Transit Production 
by Transit Accessibility Level (Property Method) 

 
 

Figure 6-12. Non-Zero Intercept Relationships between TotalDensity and Transit 
Production by Transit Accessibility Level (Property Method) 
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Figure 6-13. Intercept and No-Intercept TotalDensity Models for Transit Production 
(Property Method) 

 
6.4.3 Data Compiled Using Buffer Method 
 
Tables 6-22, 6-23, and 6-24 present regression models obtained for Miami-Dade County for the 
low, medium, and high transit accessibility groups, respectively.  The data for land use variables 
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Table 6-23. Models for Miami-Dade (Buffer Method, Medium Accessibility) 
Order Model Adjusted R2 MSE 

1 5.05978 � AvgEntropy3 0.6589 2.46326 
2 0.05475 � DECAY_POP 0.5542 3.21934 
3 0.00022794 � AvgParcelSFSize3 0.5297 3.39657 
4 0.00024459 � AvgParcelSize3 0.5255 3.42695 
5 0.00029550 � AvgParcelMFSize3 0.5104 3.53548 

* Variable descriptions in alphabetic order: 
AvgEntropy3: land use mix in the buffer area of a census tract. 
AvgParcelMFSize3: average parcel size for multi-families in the buffer area of a census tract. 
AvgParcelSFSize3: average parcel size for single families in the buffer area of a census tract. 
AvgParcelSize3: average parcel size for residential properties in the buffer area of a census tract. 
DECAY_POP: percentage of service population. 
 

Table 6-24. Models for Miami-Dade (Buffer Method, High Accessibility) 
Order Model Adjusted R2 MSE 

1 5.44422 � AvgEntropy3 0.8566 1.21435 
2 0.05941 � DECAY_POP 0.8212 1.51486 
3 0.00035157 � AvgParcelSize3 0.8060 1.64301 
4 0.00035490 � AvgParcelSFSize3 0.8052 1.65034 
5 0.00030793 � AvgParcelMFSize3 0.7437 2.17109 
6 3.17832 � JOBS_HHm3 + 0.08397 � TotalPopDensity3 0.7825 1.84221 
7 0.00002509 � AvgMFValue 0.6800 2.71033 
8 0.00002761 � AvgValue 0.6557 2.91670 
9 0.00002933 � AvgSFValue 0.6533 2.93662 

10 2.48323 � JOBS_HH3 + 0.03973 � TotalDenity3 0.7011 2.53159 
11 0.34436 � SFPopDensity3 0.5599 3.72781 

* Variable descriptions in alphabetic order: 
AvgEntropy3: land use mix in the buffer area of a census tract. 
AvgMFValue: average multi-family property value in the buffer area of a census tract. 
AvgSFValue: average value for single families in the buffer area of a census tract. 
AvgValue: average value for residential properties in the buffer area of a census tract. 
AvgParcelMFSize3: average parcel size for multi-families in the buffer area of a census tract. 
AvgParcelSFSize3: average parcel size for single families in the buffer area of a census tract. 
AvgParcelSize3: average parcel size for residential properties in the buffer area of a census tract. 
DECAY_POP: percentage of service population. 
JOBS_HH3: job house balance. 
JOBS_HHm3: modified jobs-housing balance in buffer area of a census tract. 
SFPopDensity3: single-family population density in buffer area of a tract. 
TotalDensity3: total employment plus population density. 
TotalPopDensity3: total single- plus multi-family population density in buffer area of a census tract. 
 
The results in Tables 6-22 to 6-24 show that only AvgEntropy3 (land use mix in buffer area of a 
census tract) appears to be a consistently significant factor on transit use at various accessibility 
levels.  Figure 6-14 illustrates the relationship between AvgEntropy3 and transit productions by 
assuming zero model intercept as previously described.  The resulted models show that the 
effects of AvgEntropy3 on transit use at different accessibility levels increases with accessibility.  
In addition, a similar pattern can be observed when non-zero intercept is specified since the 
model coefficients at the medium and high accessibility levels are nearly equal (see Figure 6-15).  
Note that the variable itself also has a positive relationship with transit productions for both no-
intercept and intercept models (see Figure 6-16) when the data are not grouped by accessibility 
level. 
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Figure 6-14. Through Origin Relationships between AvgEntropy3 and Transit Production 
by Transit Accessibility Level (Buffer Method)  

 

Figure 6-15. Non-Zero Intercept Relationships between AvgEntropy3 and Transit 
Production by Transit Accessibility Level (Buffer Method) 
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Figure 6-16. Intercept and No-Intercept AvgEntropy3 Models for Transit Productions 
(Buffer Method) 
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Table 6-26. Models for Miami-Dade (Tract Method, Medium Accessibility) 
Order Model Adjusted R2 MSE 

1 0.36487 � AvgPChild 0.7437 0.76152 
2 1.20737 � %HH0Child + 0.00011800 � AvgParcelMFSize4 0.8085 0.56897 
3 3.58684 � AvgEntropy4 0.7370 0.78149 
4 0.59011 � AvgWrkrChild + 2.73390 � MFDUNoAuto% 0.7602 0.71249 
5 0.47044 � AvgP0Child + 2.85744 � DUNoAuto% 0.7538 0.73160 
6 0.79378 � AvgWrkr0Child + 0.03056 � TotalDenity4 0.7251 0.81673 
7 0.00010802 � AvgParcelSFSize4 + 3.54081 � SFDUNoAuto% 0.6961 0.90288 
8 0.00013584 � AvgParcelSize4 + 0.03832 � MFPopDensity4 0.7017 0.88641 
9 3.00923 � JOBS_HHm4 0.6090 1.16181 

10 2.34044 � JOBS_HH4 0.6082 1.16425 
11 0.00000823 � AvgMFValue + 0.01719 � Black 0.7440 0.76054 
12 2.62393 � ForeignBorn 0.5696 1.27895 
13 0.07133 � TotalPopDensity4 0.5678 1.28403 

* Variable descriptions in alphabetic order: 
%HH0Child: percentage of households without children. 
AvgEntropy4: land use mix in a census tract. 
AvgMFValue: average multi-family property value in a census tract. 
AvgP0Child: average number of persons in households without children. 
AvgParcelMFSize4: average parcel size for multi-families in a census tract. 
AvgParcelSFSize4: average parcel size for single families in a census tract. 
AvgParcelSize4: average parcel size for residential properties in a census tract. 
AvgPChild: average number of persons in households with children. 
AvgWrkr0Child: average number of workers in households without children. 
AvgWrkrChild: average number of workers in households with children. 
Black: percentage of black population in a census tract. 
DUNoAuto%: percentage of households without auto. 
ForeignBorn: percentage of population that are immigrants in a tract. 
JOBS_HH4: job house balance. 
JOBS_HHm4: modified jobs-housing balance in a census tract. 
MFDUNoAuto%: percentage of multi-family households without auto. 
MFPopDensity4: multi-family population density in a census tract. 
SFDUNoAuto%: percentage of single-family households without auto. 
TotalDenity4: total employment plus population density. 
TotalPopDensity4: total single- plus multi-family population density in a census tract. 
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Table 6-27. Models for Miami-Dade (Tract Method, High Accessibility) 
Order Model Adjusted R2 MSE 

1 0.63133 � AvgPChild 0.8580 1.17172 
2 5.30550 � AvgEntropy4 0.8527 1.21531 
3 1.21018 � AvgP0Child 0.8342 1.36739 
4 1.54220 � AvgWrkr0Child + 4.37589 � MFDUNoAuto% 0.8535 1.20873 
5 0.00021483 � AvgParcelSize4 + 4.4047 � DUNoAuto% 0.8540 1.20442 
6 0.00022813 � AvgParcelSFSize4 + 4.37339 � SFDUNoAuto% 0.8516 1.22407 
7 2.95817 � %HH0Child + 0.01952 � Black 0.8330 1.37725 
8 1.52631 � AvgWrkrChild 0.7488 2.07212 
9 2.73285 � ForeignBorn + 2.69109 � JOBS_HHm4 0.7844 1.77868 

10 1.08698 � AvgAutoChild + 0.03456 � TotalDensity4 0.7624 1.95961 
11 0.00029918 � AvgParcelMFSize4 0.7017 2.46092 
12 0.00002478 � AvgMFValue 0.6878 2.57562 
13 0.45504 � TotalDUDensity4 0.6769 2.66501 
14 0.00002538 � AvgValue 0.6533 2.85978 
15 0.00002612 � AvgSFValue 0.6386 2.98150 
16 4.00601 � JOBS_HH4 0.6271 3.07628 
17 0.22862 � SFPopDensity4 + 0.12419 � MFPopDensity4 0.7144 2.35625 
18 1.14223 � SFDUDensity4 0.5637 3.59934 

* Variable descriptions in alphabetic order: 
%HH0Child: percentage of households without children. 
AvgEntropy4: land use mix in a census tract. 
AvgMFValue: average multi-family property value in a census tract. 
AvgP0Child: average number of persons in households without children. 
AvgParcelMFSize4: average parcel size for multi-families in a census tract. 
AvgParcelSFSize4: average parcel size for single-families in a census tract. 
AvgParcelSize4: average parcel size for residential properties in a census tract. 
AvgPChild: average number of persons in households with children. 
AvgWrkr0Child: average number of workers in households without children. 
AvgWrkrChild: average number of workers in households with children. 
Black: percentage of black population in a census tract. 
DUNoAuto%: percentage of households without auto. 
ForeignBorn: percentage of population that are immigrants in a tract. 
JOBS_HH4: job house balance. 
JOBS_HHm4: modified jobs-housing balance in a census tract. 
MFDUNoAuto%: percentage of multi-family households without auto. 
MFPopDensity4: multi-family population density in a census tract. 
SFDUNoAuto%: density for single-family households without auto in a census tract. 
TotalDenity4: total residential property density in a census tract. 
TotalPopDensity4: total single- plus multi-family population density in a census tract. 
 
The results in Tables 6-25 to 6-27 show that %HH0Child, AvgWrkrChild, AvgWrkr0Child, 
AvgPChild, AvgP0Child, and JOBS_HH4 appear to be significantly factors on transit use at 
various accessibility levels.  Figure 6-17 illustrates the zero-intercept relationships between 
percentage of households without children (%HH0Child) and transit productions.  These models 
show that the effects of %HH0Child on transit use at different accessibility levels increases with 
accessibility.  However, the same pattern holds only at the low and medium accessibility levels 
for intercept models (see figure 6-18).  In addition, no-intercept and intercept models show 
different relationships between %HH0Child and transit productions for unclassified data (see 
Figure 6-19). 
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Figure 6-17. Through Origin Relationships between %HH0Child and Transit Production 
by Transit Accessibility Level (Tract Method) 

 

Figure 6-18. Non-Zero Relationships between %HH0Child and Transit Production by 
Transit Accessibility Level (Tract Method) 
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Figure 6-19. Intercept and No-Intercept %HH0Child Models for Transit Production 
(Tract Method) 

 
Figure 6-20 illustrates the no-intercept models for the average number of workers in households 
with children (AvgWrkrChild).  The models show that the effect of AvgWrkrChild on transit use 
increases with the accessibility level.  Similar pattern can only be observed at the low 
accessibility level for intercept models (Figure 6-21).  The variable itself had a negative 
relationship with transit productions for no-intercept models (see Figure 6-22) when the data 
were not categorized by accessibility level. 
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Figure 6-20. Through Origin Relationships between AvgWrkrChild and Transit 
Production by Transit Accessibility Level (Tract Method) 

 

Figure 6-21. Non-Zero Intercept Relationships between AvgWrkrChild and Transit 
Production by Transit Accessibility Level (Tract Method) 
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Figure 6-22. Intercept and Non-Intercept AvgWrkrChild Models for Transit Productions 
(Tract Method) 

 
Figure 6-23 illustrates the no-intercept models for the average number of workers in households 
without children (AvgWrkr0Child).  The models show that the effect of AvgWrkr0Child on 
transit use at different accessibility levels increases with accessibility.  Same as AvgWrkrChild, 
similar pattern can only be observed at the low accessibility level for intercept models (Figure 6-
24).  The variable itself also has a negative relationship with transit productions for no-intercept 
models (see Figure 6-25) when the data were not categorized by accessibility level. 
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Figure 6-23. Through Origin Relationships between AvgWrkr0Child and Transit 
Production by Transit Accessibility Level (Tract Method) 

 

Figure 6-24. Non-Zero Intercept Relationships between AvgWrkr0Child and Transit 
Production by Transit Accessibility Level (Tract Method) 
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Figure 6-25. Intercept and Non-Intercept AvgWrkr0Child Models for Transit Productions 
(Tract Method) 

 
Figure 6-26 illustrates the zero-intercept models for AvgPChild, i.e., average number of persons 
in households with children, and transit productions at different accessibility levels.  These 
models reveal a positive relationship between the regressor and the dependent variable.  In 
addition, the effect of AvgPChild on transit production increases with accessibility.  As 
illustrated in Figure 6-27, the similar positive relationship can only be observed at the high 
accessibility level when the intercept was specified as non-zero.  However, AvgPChild itself has 
a positive relationship with transit productions for both no-intercept and intercept models (see 
Figure 6-28) when the data were not grouped by accessibility level. 
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Figure 6-26. Through Origin Relationships between AvgPChild and Transit Production 
by Transit Accessibility Level (Tract Method) 

 

Figure 6-27. Non-Zero Intercept Relationships between AvgPChild and Transit 
Production by Transit Accessibility Level (Tract Method) 
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Figure 6-28. Intercept and No-Intercept AvgPChild Models for Transit Productions 
 
Figure 6-29 illustrates the zero-intercept models for AvgP0Child, i.e., average number of persons 
in households without children, and transit productions at different accessibility levels.  The 
resulted models show that a positive relationship exists between these two variables and the 
effect of AvgP0Child on transit production increases with accessibility.  As illustrated in Figure 
6-30, the similar positive relationship can be observed for the low and high accessibility groups 
when the intercept was specified as non-zero.  However, AvgP0Child is negatively related with 
transit productions for intercept model (see Figure 6-31) when the data were not grouped by 
accessibility level. 
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Figure 6-29. Through Origin Relationships between AvgP0Child and Transit Production 
by Transit Accessibility Level (Tract Method) 

 

Figure 6-30. Non-Zero Intercept Relationships between AvgP0Child and Transit 
Production by Transit Accessibility Level (Tract Method) 
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Figure 6-31. Intercept and No-Intercept AvgP0Child Models for Transit Productions 
 
Figure 6-32 illustrates the zero-intercept models for the job house balance variable, i.e., 
JOBS_HH4, and transit productions at different accessibility levels.  These models show that a 
positive relationship exists between these two variables and the effect of JOBS_HH4 on transit 
production increases with accessibility.  As illustrated in Figure 6-33, the similar positive 
relationship can only be observed at the low accessibility level for non-zero intercept models.  In 
addition, AvgP0Child is negatively related with transit productions for intercept model (see 
Figure 6-34) when the data were not grouped by accessibility level. 
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Figure 6-32. Through Origin Relationships between JOBS_HH4 and Transit Production 
by Transit Accessibility Level (Tract Method) 

 

Figure 6-33. Non-Zero Intercept Relationships between JOBS_HH4 and Transit 
Production by Transit Accessibility Level (Tract Method) 
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Figure 6-34. Intercept and No-Intercept JOBS_HH4 Models for Transit Productions 
 
6.5 Summary 
 
In this section, linear regression models developed based on data compiled using different 
methods and with all variables and demand variables only have been presented.  The models 
presented in Section 6.2 were calibrated using data compiled by four different methods for 
Miami-Dade County: GIS Land Use Method, Property Method, Buffer Method, and Tract 
Method.  Models based on these four data compilation methods consistently revealed 
AccessTWPop, i.e., transit walk skim accessibility weighted by population, as the significant 
variable that had a linear relationship with transit productions.  Other accessibility variables such 
as those weighted by number of workers were found to be significant as well.  The variables of 
transit LOS, e.g., Dailybus, were also significant.  In addition, the results from the GIS Land Use 
and Buffer methods indicate that DECAY_POP, i.e., transit service population percentage 
described in Section 5, had a linear relationship with transit productions.  The R2s for the models 
with this new variable were even higher than those with accessibility and LOS variables obtained 
from the GIS Land Use Method.  Other than the accessibility and transit LOS variables, the 
socioeconomic and demographic variables compiled at the tract level by different methods did 
not show such promising relationship with transit productions.  JOBS_HH, however, appeared to 
be a significant factor in the attraction models for Miami-Dade County.  However, the 
explanatory power of this variable was not as significant as the accessibility/level of service 
variables for transit productions. 
 
The models calibrated based on the available data from Broward and Palm Beach counties have 
been described in Section 6.3.  Data for Broward County were compiled using both the Buffer 
Method and Tract Method, while the data for Palm Beach County were compiled using only the 
Tract Method.  Similar to those for Miami-Dade County, the results for Broward and Palm 
Beach counties suggest that AccessTWPop is a significant factor for transit productions and  
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JOBS_HH is a significant factor for attractions.  The R2’s for transit attraction models were also 
much lower than those for production models. 
 
Table 6-28 summarizes the results presented in Section 6.4, which were obtained after excluding 
the transit supply variables and controlling for transit LOS as measured by transit accessibility.  
Models for three groups of data with low, medium, and high accessibility were developed.  Table 
6-28 shows the effects of the demand variables on transit use at different accessibility levels, 
with the +/- symbols indicating a positive or negative effect and Null representing a nearly 
neutral effect.  Those variables that appear in all models and have consistent positive (or 
negative) effects on transit uses among various transit accessibility levels are better candidates 
for serving as predictors of transit use.  Such variables include total density (TotalDensity) for 
data compiled with the GIS Land Use Method, and entropy measures (AvgEntropy) for data from 
the Property Method and the Buffer Method. 
 

Table 6-28. Variables for Intercept and No-Intercept Models 
Zero Intercept Intercept Method Variable Low Medium High Total Low Medium High Total

SFDUDensity + + + +  + + - + GIS Land 
Use 

Method TotalDensity + + + + + + + + 
AvgEntropy + + + + + + + + Property 

Method TotalDensity + + + + Null + Null + 
Buffer 

Method AvgEntropy + + + + + + + + 

%HH0Child + + + + + + - - 
AvgWrkrChild + + + + + - - - 
AvgWrkr0Child + + + + + - - - 

AvgPChild + + + + - - + + 
AvgP0Child + + + + + - + - 

Tract 
Method 

JOBS_HH4 + + + + + - - - 
 
The results in Table 6-27 indicate that none of the variables from the Tract Method models had 
consistent effect on transit use after the non-zero intercept was specified.  The results also imply 
that the effects of density variables such as TotalDensity can only be modeled when more 
detailed GIS data are utilized in the model calibration process since it was significant only for 
models based on data compiled using the GIS Land Use data and the Property Method.  In other 
words, data aggregated based on simplified assumptions, such as those in the Tract Method, do 
not provide adequate information for estimating transit use.  Therefore, factors appropriate to 
estimate transit use depend on the level of detail of the data and the method used to compile the 
data. 
 
A word of caution is in order regarding entropy as a transit use predictor.  Entropy is an indicator 
of land mix.  A large entropy value indicates dissimilarity of land uses in an area.  Entropy has 
been identified as having a positive effect on increasing walk trips by some researchers (Frank 
and Pivo, 1994).  It has also been positively associated with transit use (Frank and Pivo, 1994; 
Seskin, 1996).  While it is relatively easy to understand that a good land use mix may mean close 
proximity of opportunities reachable by walk, thus more walk trips, it is less certain that good 
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land use mix is the cause for higher transit use.  One possible explanation may be that good land 
use mix was a common characteristic for most areas when transit services were initially 
introduced in the early part of the century and this characteristic has remained for transit-oriented 
neighborhoods.  In comparison, newer suburban developments have been designed for 
automobiles and typically lack mixed land uses.  Therefore, entropy itself may not be a cause of 
low or high transit use, rather it is a characteristic associated neighborhoods, with transit oriented 
neighborhoods having high entropy while auto-oriented ones having low entropy.  In other 
words, the relationship between entropy and transit use is not causal, but association.  Therefore, 
if a community has been designed with mixed land use, walk trips may be encouraged but unless 
good transit services are provided, it is unlikely that transit usage will be high.  As a result, the 
predictive power of land use mix (average entropy) may be limited.   
 
The same is suspected to be true for jobs-housing balance (JOBS_HH), another land use mix 
measurement.  Good jobs-housing balance means that employment opportunities are nearby and 
there may be fewer long work commutes and more walk trips.  However, similar to entropy, 
good jobs-housing balance itself may not actually encourage transit use but is a characteristic of 
transit-oriented neighborhoods.  As such, its power to explain transit use will be limited. 
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7. SUMMARY AND CONCLUSIONS  
 
This report presented research methodologies and results on transit accessibility and factors that 
impact transit use and that have the potential of being considered in the FSUTMS modal split 
model.  This research utilized the TOB survey data from the SEFRTCS, demographic and 
socioeconomic data from FSUTMS models, and extensive and detailed land use information 
such as land use GIS data and property tax data. 
 
A new methodology was developed for estimating transit accessibility for production trips.  This 
method took into consideration walking distance to transit stops, population distribution, and 
existence of barriers to pedestrians.  Data included the detailed street network, bus stop locations, 
bus routes, population and dwelling unit information by TAZ, property locations as represented 
by their label points, and property tax database, which provided information on number of 
bedrooms, used as a proxy for household size, at each property location.  Additionally, the transit 
onboard survey data from the 1999 Southeast Florida Travel Characteristics Study were used to 
determine the effect of walking distance on transit use.  The results of this research suggested 
that transit use deteriorated exponentially with walking distance to transit stops.  A decay 
function was determined based on the survey data to reflect this deteriorating trend in transit use 
with respect to walk distance, and transit accessibility was measured by the percentage of the 
population, weighted by the decay function, in a zone within 0.5 mile of walking distance from 
transit stops.  Increasing the limit of walking distance longer than 0.5 mile produced no 
noticeable increase in accessibility based on the survey data.  Because of the decay in transit use 
due to increases in walking distance, transit accessibility was much lower than the traditional 
buffer method or the network ratio method would estimate. 
 
Results from analysis also showed that there was no significant difference between the 
percentage of population with transit access and the percentage of production trips with transit 
access in a given zone.  This means that the percentage of population with transit access can be 
used directly in place of percentage production trips with transit access as required as input by 
FSUTMS modal split model. 
 
To allow the use of the transit walk accessibility measure for forecast purposes, where detailed 
information on street configuration and population distribution may be lacking for new TAZs, 
regression models were developed using easily obtainable data to predict transit accessibility.  
One of the variables used in predicting transit accessibility for production trips was the number 
of streets in a TAZ intersecting TAZ boundary per 1000 feet.  This variable in fact measures how 
well the street configuration provides walk accessibility, for example, in traditional 
neighborhoods with grid street patterns and small blocks versus suburban neighborhoods where 
streets are often curvilinear with cul-de-sacs.  The value of this variable must be determined 
based on the anticipated type of community in new TAZs.  This may be used as a planning tool 
to examine the impact of different alternatives of development in a new area in terms of its 
transit accessibility. 
 
Employment accessibility to transit is defined as the percentage of employees in a zone within 
0.25 mile of transit stops.  Here the 0.25-mile distance is air distance rather than actual walking 
distance.  This choice was because most commercial developments are located along arterials 
and thus are rather accessible to transit, and because the spatial distribution of employees in a 
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zone is difficult to determine.  Employing land use data improves the information on the spatial 
distribution of employees in a zone as opposed to assuming employees are evenly distributed 
across the entire zone or they are evenly distributed along all arterials, although on a few 
occasions land use data have not been consistent with employment data from the ZDATA file. 
 
Forecasting future employment accessibility to transit services may be accomplished using the 
regression model developed in this study.  Application of the model only requires the calculation 
of bus route density in a zone and the service and commercial employment ratio; both are easily 
obtainable. 
 
Auto access of transit was analyzed using the TOB data of transit trips that involved accessing a 
transit station/stop either by park-and-ride or kiss-and-ride.  Analysis results showed that while 
there was no apparent relationship between auto access trip distance and the transit trip length, 
most transit trips were longer than the auto access trips.  The auto access distance for most 
(91.5%) sampled transit trips was shorter than 10 miles; the longest auto access trip was 14.6 
miles.  Therefore, we concluded that auto access distance in a zone may be assumed to be up to 
the longest transit trips likely from that zone (by considering premium transit modes and major 
activity centers) up to 14 miles.  This result, obtained base on data from Miami-Dade County, 
however, may not be applicable to areas with a different urban structure, premier transit 
alignment, and parking availability.  This upper limit also depends on the route length of the 
rapid transit services and may change if the route configuration or length changes. 
 
In addition to transit walk and auto accessibility, transit factors that are most significant in 
impacting transit use have also been investigated.  Multiple regression analysis was employed for 
this purpose using data compiled for Miami-Dade, Broward, and Palm Beach counties.  Four 
methods were used to compile the model data, which range in their levels of detail of the land 
use and demographic information.  Regional accessibility variables, especially those weighted by 
population, appeared to have the most significant impact on both transit productions and 
attractions, regardless of which method was used to compile the data.  Regional accessibility 
measures were calculated based zonal population, employment, zonal trip time, and impedance 
functions calibrated based on travel survey data for both transit and highway networks.  
However, the impedance functions are unlikely to be transferable and may need to be calibrated 
for individual urban areas, which will require a moderate effort. 
 
For Miami-Dade County, the average number of daily bus runs per bus stop in a given tract and 
percentage of tract area falling into a 0.25-mile transit buffer were also relatively good indicators 
for predicting transit use at both production and attraction ends.  Because these two kinds of data 
are easier to compile and are more reliable than regional accessibility, they may be used as 
alternatives to regional accessibility measures.  However, based on the results from the GIS Land 
Use Method, Property Method, and Buffer Method, the newly developed DECAY_POP variable, 
i.e., percentage of distance decayed transit service population is a better indicator for transit 
production than percentage of service area in a tract. 
 
No significant linear relationships were found consistently between transit use and the 
demographic, socio-economic, and other transit LOS variables for either production or attraction 
trips beside the regional accessibility measures, the number of bus runs, and transit service 
coverage, which are all related to transit supply.  This may be due to the loss of spatial variation 
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in these variables when large spatial analysis units (such as census tracts) are used to compile the 
data.  While smaller spatial units will preserve the characteristics of an area or population better, 
this research has determined that the TOB survey cannot be used due to the limited number of 
samples available resulting in a significant number of spatial units with no samples. 
 
Compared with transit production trip models, the goodness-of-fit for attraction models were 
relatively poor.  The R2’s for these models were consistently lower than those for the production 
trip models.  This may be the result of less reliable data on zonal employment.  Furthermore, the 
models for Broward and Palm Beach counties showed similar effects of the accessibility 
variables on transit productions.  Again, no other variables can be identified as the 
supplement/substitute of the accessibility variables. 
 
The results suggest that transit supply dominates other factors in contributing to transit use, 
which in turn is the result of transit service supply being determined based on demand.  The 
results from excluding the primary transit supply factors, such as the accessibility and transit 
LOS variables, showed that total density (population plus employment) in the buffer area of 
transit routes performed better than other demand variables based on the data compiled by the 
GIS Land Use Method.  The land use mix variables in buffer areas also performed better than 
other variables based on the data compiled using the Property Method and Buffer Method.  No 
similar conclusions can be drawn from the models calibrated for the Tract Method.  
Consequently, mode split models that utilize data of different details to estimate the proportion 
of trips using transit may require different explanatory variables.  Additional research efforts are 
necessary to estimate the coefficients of the potential variables identified in this research for each 
travel mode’s utility function utilized in the modal split process. 
 
This research has used GIS extensively to compile data for various variables created for the 
accessibility analyses and the transit use analyses.  Transit accessibility analyses require bus stop 
locations and property locations.  As it is becoming more common for counties to possess GIS 
parcel data, the availability of property location data is not foreseen as a problem for the 
application of the methodology developed in this research.  Property tax records should include 
information on number of bedrooms for each residential property and information on the type of 
the property to indicate if it is a single- or multi-family dwelling.  If number of bedroom 
information is unavailable, then an average household size will have to be assigned to dwelling 
units that are of the same type (single- or multi-family). 
 
Finally, the transit accessibility analysis can be automated with a specially designed GIS 
program.  This program will automate the process of matching properties to streets, assign 
household size, create transit service network, calculate the percentage of population with transit 
access in a TAZ, estimate the percentage of workers with transit access in a zone using land use 
information, and so on. 
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8. RECOMMENDATIONS 
 
Based on the research results described in this report, the following recommendations are 
provided for consideration for future effort in improving FSUTMS modal split models: 
 

(1) The long transit walk (assuming an one-mile walking distance) file is unnecessary 
since transit use will be extremely low beyond one-half mile from transit stops.  
Instead, a single transit walk file can be used that is based on one-half mile walking 
distance and the decay function calibrated in this research.  The data may also be used 
for transit service planning as it can provide much more accurate information 
regarding service population at transit stop level. 

 
(2) The percentage of population served by transit in a zone may be estimated using the 

transit service population forecast model developed in this research for any reasons 
such as lack of data or skilled GIS staff.  The forecast models can also be used for 
forecasting transit service population for future year models. 

 
(3) A GIS application should to be implemented that will calculate percentage of transit 

service population in a zone based on street network data, ZDATA1 and ZDATA2 
files, property tax database, and parcel GIS data.  In the case that GIS parcel data are 
unavailable, the regression model will be applied to estimate the percentage of 
distance decayed service population. 

 
(4) If a buffer method is to be used to estimate transit service population, cautions should 

be used when the calculated service population percentage from the buffer method 
exceeds 50%, a level that the distance decayed transit service population rarely 
exceeds.  Only when population is actually clustered around transit stops, a 
percentage higher than 50% may be justified. 

 
(5) Regional transit accessibility may be considered for the inclusion in the modal split 

model.  This requires that accessibility to be estimated for future, which is possible 
given forecast population, employment, and transportation improvements. 

 
(6) Density as measured by total employment plus population per acre may serve as 

predictors of demand. 
 

(7) To ensure adequate data are available to support a more conclusive study, carefully 
designed surveys are desired in the future to obtain adequate number of observations 
in areas that reflect the different spectrum of socioeconomic and land use 
characteristics.  Future household surveys should target transit households so that 
studies can be carried out to directly determine the modal split instead of using an 
indirect approach as in this study.  If a community leadership sees transit 
development as necessary, then the development of information, data, and forecasting 
methods to better place investments is worthwhile. 
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